

Université

de Strasbourg

Measurement of the CP properties of the Higgs boson

Mario Sessini

Journées de Rencontre des Jeunes Chercheurs La Rochelle 18 – 22 octobre 2021

 \rightarrow 2nd year PhD student from Strasbourg

 \rightarrow Working at the Institut Pluridisciplinaire Hubert Curien as part of the CMS collaboration

 \rightarrow My thesis is entitled "Study of the CP properties of the Higgs boson in the tau-tau channel in the CMS experiment at the LHC"

 \rightarrow Quick overview : Introduction to Higgs boson properties, examples of CP studies, CP study in the $H \rightarrow \tau \tau$ channel

Introduction

 \rightarrow Discovery of a new boson announced in 2012 by ATLAS and CMS collaborations with properties similar to standard Higgs boson

→ Last undiscovered particle of the standard model

→ Many properties already well known : neutral and spin 0 boson with a mass of 125,38 \pm 0,14 GeV (CMS 2020)

→ The Higgs boson is described as a purely scalar particle in the standard model but CP violations could be occuring in its couplings

CP properties of the Higgs boson

CP is a combination of two operators standing for **C**harge and **P**arity

→ C transforms a particle into its antiparticle : H is its own anti-particle

 → P transforms the spatial coordinates of a particle into its mirror image : would H decay the same way in a mirror ?

(image:DESY/designdoppel)

Looking at Higgs boson decay products in detectors such as CMS gives important information about the nature of its couplings

Couplings of the Higgs boson

Couplings of the Higgs boson

Decay channel	Branching ratio [%]
$H \rightarrow b \bar{b}$	57.5 ± 1.9
$H \rightarrow WW$	21.6 ± 0.9
$H \rightarrow gg$	8.56 ± 0.86
$H \to \tau \tau$	6.30 ± 0.36
$H \rightarrow c \bar{c}$	2.90 ± 0.35
$H \rightarrow ZZ$	2.67 ± 0.11
$H ightarrow \gamma \gamma$	0.228 ± 0.011
$H \rightarrow Z\gamma$	0.155 ± 0.014
$H ightarrow \mu \mu$	0.022 ± 0.001

CP violating effects may occur at tree level in couplings to fermions but not to bosons

- \rightarrow Decay to $t\bar{t}$: impossible due to large top mass
- \rightarrow Decay to $C\overline{C}$: not observed yet
- \rightarrow Decay to $\,\mu\mu\colon$ very rare
- \rightarrow Decay to $b\overline{b}$: spin information washed out

Tau decay channel and top production mode are therefore the best options for CP studies at the LHC

CP study in Z boson pair decay

- \rightarrow CP studies are also performed in couplings to bosons
- \rightarrow Pseudo-scalar hypothesis is tested in $H \rightarrow ZZ \rightarrow 4l$ decays
- \rightarrow No neutrinos : event kinematic is fully described
- \rightarrow Study is based on kinematic discriminants
- → Events are categorized according to their properties

J^P	J^P	Expected		ol I^p	CI
model	production	$(\mu = 1)$	Obs. 0^{+}	Obs. J^{\prime}	CLs
0-	any	2.4σ (2.7 σ)	-1.0σ	$+3.8\sigma$	0.05%
$0_{\rm h}^+$	any	$1.7\sigma (1.9\sigma)$	-0.3σ	$+2.1\sigma$	4.5%
1-	$q\bar{q} \rightarrow X$	2.7σ (2.7 σ)	-1.4σ	$+4.7\sigma$	0.002%
1-	any	2.5σ (2.6 σ)	-1.8σ	$+4.9\sigma$	0.001%
1^{+}	$q\bar{q} \to X$	2.1σ (2.3σ)	-1.5σ	$+4.1\sigma$	0.02%
1^{+}	any	2.0σ (2.1 σ)	-2.1σ	$+4.8\sigma$	0.004%
$2^+_{\rm m}$	$gg \to X$	$1.9\sigma (1.8\sigma)$	-1.1σ	$+3.0\sigma$	0.9%
$2^+_{\rm m}$	$q\bar{q} \rightarrow X$	$1.7\sigma (1.7\sigma)$	-1.7σ	$+3.8\sigma$	0.2%
2^+_m	any	$1.5\sigma (1.5\sigma)$	-1.6σ	$+3.4\sigma$	0.7%
$2_{\rm b}^{+}$	$gg \to X$	$1.6\sigma (1.8\sigma)$	-1.4σ	$+3.4\sigma$	0.5%
$2_{\rm h}^+$	$gg \to X$	3.8σ (4.0 σ)	$+1.8\sigma$	$+2.0\sigma$	2.3%
$2_{\rm h}^{-}$	$gg \to X$	$4.2\sigma~(4.5\sigma)$	$+1.0\sigma$	$+3.2\sigma$	0.09%

 \rightarrow Pseudo-scalar hypothesis is excluded with 3.8 σ

Yukawa coupling to fermions

Each fermionic interaction with the Higgs boson can be decomposed into a CP-even κ_l and a CP-odd $\tilde{\kappa}_l$ coupling :

$$L_Y = -\frac{m_l \phi}{v} (\kappa_l \overline{\psi_l} \psi_l + \tilde{\kappa}_l \overline{\psi_l} i \gamma_5 \psi_l)$$

The CP-odd fraction of the coupling is related to an effective mixing angle α^{Hll} :

$$f_{cp}^{Hll} = \frac{|\tilde{\kappa}|^2}{|\kappa|^2 + |\tilde{\kappa}|^2} = \sin^2(\alpha^{Hll})$$

 $\rightarrow m_l$ is the mass of the interacting fermion

 $\rightarrow \mathcal{U}=$ 246 GeV is the vacuum expectation value

 $\rightarrow \phi$ represents the Higgs scalar field

 $\rightarrow \psi_l$ represents the interacting fermionic field

For a mixing angle of 0° (90°) the coupling is purely scalar (pseudo-scalar) and is a mixed state for any other value

CP study in top quark production mode

This analysis looks at the top coupling in the $t\bar{t}H$ process with H decaying to $\gamma\gamma$

0

 \rightarrow A BDT is trained to extract signal events from background events

 \rightarrow Events are categorized according to their BDT score

 \rightarrow Data are fitted to measure the signal strength of the process

CP study in top quark production mode

 \rightarrow A 2nd BDT is trained to separate CP-odd events from CP-even events

 \rightarrow Background is removed from data using previous results

→ Events are categorized according to their BDT score called D_{0-}

 \rightarrow Data are fitted to measure the CP-odd fraction

 $f_{CP}^{Htt} = 0.00 \pm 0.33$ at 68% CL $f_{CP}^{Htt} = 1$ excluded with 3.2 σ

CP sensitive observable in the tau decay channel

Tau lepton decay modes

Reconstructing the Higgs rest frame can be a tough task in a proton collider like the LHC : optimized methods are needed

Decay mode	Meson resonance	$\mathcal{B}[\%]$
$\tau^- \rightarrow e^- \overline{\nu}_e \nu_\tau$		17.8
$\tau^- \rightarrow \mu^- \overline{\nu}_\mu \nu_\tau$		17.4
$\tau^- \rightarrow h^- \nu_{\tau}$		11.5
$\tau^- \rightarrow h^- \pi^0 \nu_{\tau}$	$\rho(770)$	26.0
$\tau^- \rightarrow h^- \pi^0 \pi^0 \nu_{\tau}$	a ₁ (1260)	9.5
$\tau^- \rightarrow h^- h^+ h^- \nu_{\tau}$	a ₁ (1260)	9.8
$\tau^- \rightarrow h^- h^+ h^- \pi^0 \nu_{\tau}$		4.8
Other modes with hadrons		3.2
All modes containing hadrons		64.8

Impact parameter and decay plane methods

Polarimetric vector method

This method relies on the estimation of the most probable tau spin direction and could be used in any hadronic channel

Planes are spanned by the polarimetric vector and the tau momentum :

Tau reconstruction is needed

Improvement of the sensibility in the alal channel w.r.t decay plane method, possible due to secondary vertices, **done in Strasbourg**

Event categorisation

- \rightarrow Signal is separated from background with a MVA
- \rightarrow MVA uses kinematic variables as input
- \rightarrow 3 possible outputs categories :
 - \rightarrow Higgs (signal)
 - \rightarrow Genuine τ_h background (embedding)
 - \rightarrow Fake τ_h background (misidentified jet)

→ Unrolled plots are distributions of the CP angle for several MVA score ranges

→ Background estimation consistency checked in genuine and fake bkg categories

→ Signal category is "unblinded" lastly

→ "best fit" of data is extracted from a likelihood function

Results

 \rightarrow Negative log-likelihood scan to extract CP properties

$$-2\Delta \ln L = -2\left(\ln(L\alpha^{\mathrm{H}\tau\tau}) - \ln(L\alpha^{\mathrm{H}\tau\tau}_{\mathrm{best\,fit}})\right)$$

→ CP mixing angle is measured to be $-1\pm19^{\circ}$ at 68% CL

 \rightarrow CP odd hypothesis is excluded with 3,2 σ

Perspectives of improvement

 \rightarrow Extend the usage of the polarimetric vector to new channels :

 \rightarrow Some channels can't be exploited with GEF : $au o \pi\pi,
ho
ho, a_1
ho, \pi
ho$

Conclusion

 \rightarrow CP properties of the Higgs boson have been studied in several channels

 \rightarrow All measurements are consistent with the standard model so far

→ Study in the tau tau channel recently published with a contribution from Strasbourg : arXiv:2110.04836

 \rightarrow First measurement of this kind in this channel

 \rightarrow My thesis aims for improvements of the CP sensibility in hadronic or semi-leptonic channels with the polarimetric vector method

THANK YOU