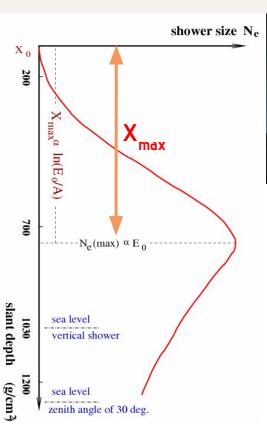


Understanding the sources of Ultra High Energy Cosmic-rays

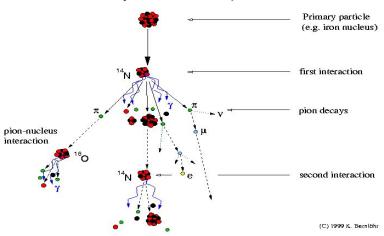
Sullivan Marafico Supervisors: Olivier Deligny & Jonathan Biteau

JRJC 18/10/2021

What are Ultra High Energy Cosmic Rays (UHECR)?

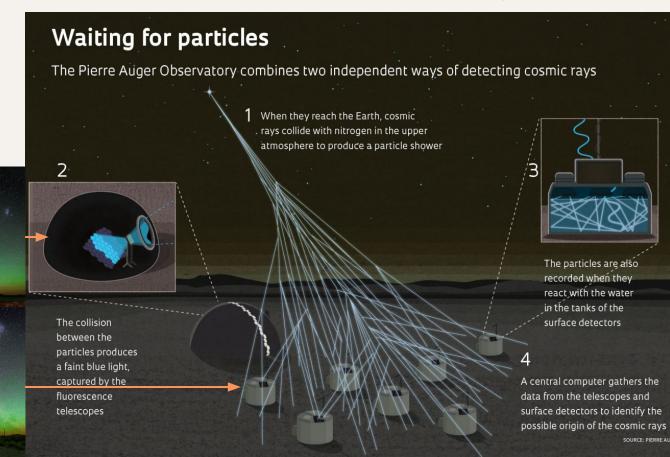

UHECR are nuclei which are accelerated up to 10^{21} eV. (>10¹⁸ eV)

Nuclei reach the earth


Hadronic shower

Three main observables:

- → Arrival directions
- → Energy
- → X_{max}, Depth of maximum shower (characteristic length of the shower, linked to the mass)



The Pierre Auger Observatory

3 000 km², 30 times Paris

Two detectors:

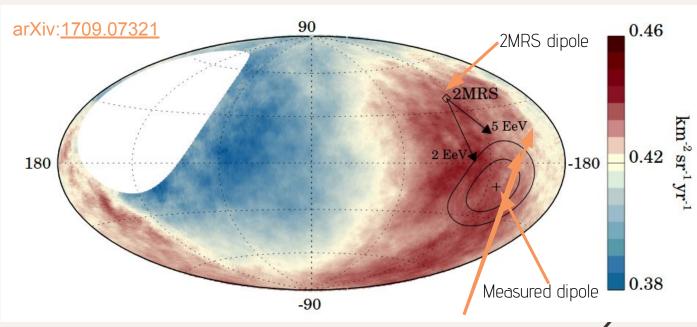
- → Telescopes measures X_{max,} energy, arrival directions
- → Surface detectors measures the energy and the arrival directions

State of the art

Arrival directions: An extragalactic origin ? (2017)

Evidence of extragalactic origins

At **E > 8 EeV,** a dipole is observed at more than the **5.2** σ level of significance.


The cosmic ray dipole points **55° away** from the 2MRS dipole

Definition rigidity:

R = E/Z

with E, the energy Z, the charge

Measured flux for events above 8 EeV, galactic coordinates

Galactic magnetic field effect for R = 2 EV & R = 5 EV

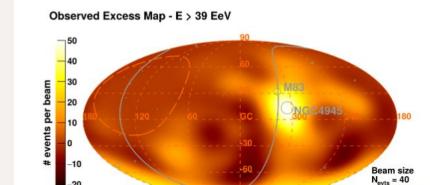
Arrival directions: An indication of the hosts galaxies ? (2018)

Comparing flux patterns

Idea: Compare the measured flux with the sky-map of extragalactic gamma-ray sources!.

Here: sky-map of starburst galaxies (SBG) compare to observed

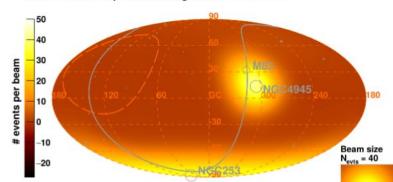
Starburst galaxies = High Star Formation rate

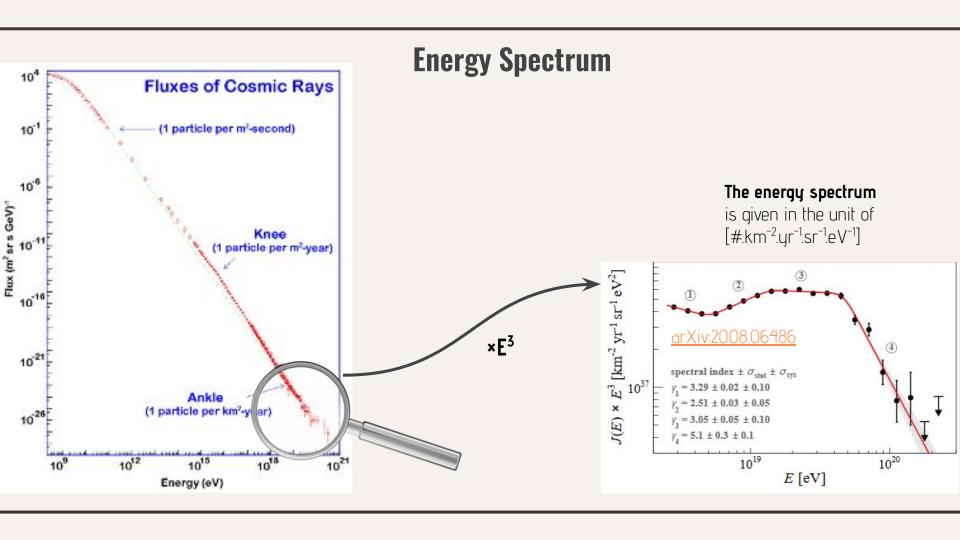

4.0 σ level of significance.

Model:

$$\Phi_{\text{model}} = \alpha \Phi_{\text{isotropy}} + (1-\alpha) \Phi_{\text{SBG}}$$

Two free parameters:

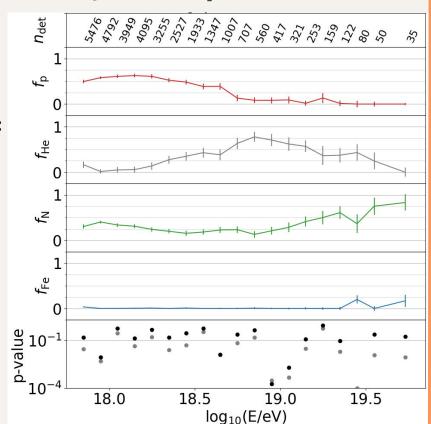

 α , the isotropy fraction Beam size



arXiv:1801.06160

-20

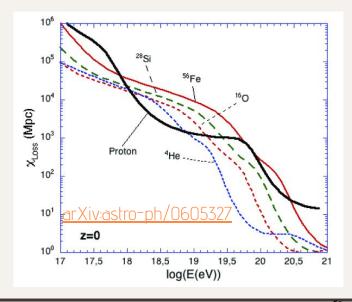
Model Excess Map - Starburst galaxies - E > 39 EeV


Xmax: Study the composition

Hadronic model: EPOS-LHC

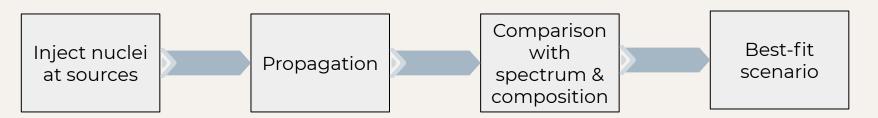
p-value:

 → Black dots: consider empty bins
 C-Statistics arXiv:1912.05444


→ Grey dots: Classical χ²

Reason:

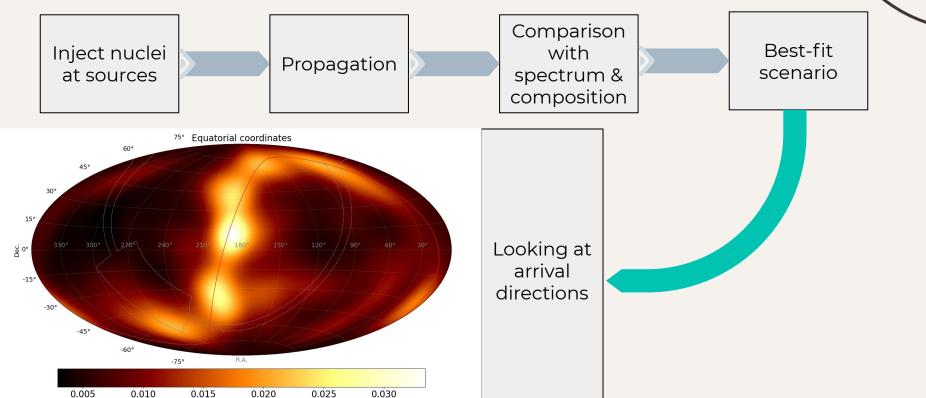
The energy and the composition gives an information about the distance of the sources.


 \square_{Loss} is the attenuation length

Towards an astrophysical model

Towards an astrophysical model: Combined Fit

→ The combined fit is an **astrophysical model** trying to describe the composition and the energy spectrum of Ultra High Energy Cosmic Ray (UHECR).

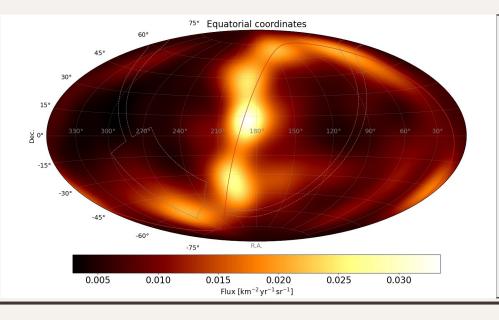


- → 5 representatives masses injected at sources: H, He, N, Si, Fe
- → 7 parameters of injection (5 for masses, 2 for the shape of the spectrum)

Hypothesis:

→ **Transient scenario**: UHECR come from transient sources

Flux $[km^{-2}yr^{-1}sr^{-1}]$



Inject nuclei at sources

Propagation

Comparison with spectrum & composition

Best-fit scenario

Generation term

Inject nuclei at sources

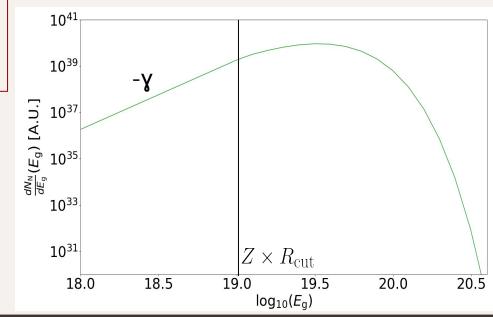
- ullet Start from a generation term: $q_A(E_{
 m g},z)$
 - Number of particles created
 - Per unit of energy
 - Per second
 - Per second $[q_A(E_{\rm g},z)] = {
 m eV}^{-1}\,{
 m s}^{-1}\,{
 m Mpc}^{-3}$
 - For a given specie A, at given energy, at a redshift z.

$$q_A(E_{\rm g}, z) = \underbrace{\frac{dN_A}{dE_{\rm g}}(E_{\rm g})}_{} \times S(z)$$

Gives the number of generated nuclei per source

Gives the number of source at a redshift z

Generation term: injected spectrum


Inject nuclei at sources

$$q_A(E_{\rm g}, z) = \frac{dN_A}{dE_{\rm g}}(E_{\rm g}) \times S(z)$$

Gives the number of generated nuclei per source

$$egin{aligned} E_{
m g} rac{dN_A}{dE_{
m g}}ig(E_{
m g}ig) = & E_A ig imes rac{E_{
m g} \ f(E_{
m g})}{\int_0^\infty E_{
m g} \ f(E_{
m g}) \ dE_{
m g}} \ f(E_{
m g}) = ig(rac{E}{E_{
m ref}}ig)^{-\gamma} imes igg\{ egin{aligned} 1 & E \leq Z imes R_{
m cut} \ e^{1-rac{E_{
m g}}{Z imes R_{
m cut}}} & E > Z imes R_{
m cut} \end{aligned}$$

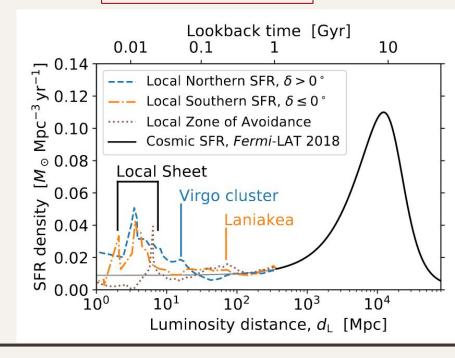
Gives the number of source at a redshift z

Generation term: evolution of sources

Inject nuclei at sources

$$q_A(E_{
m g},t)=rac{dN_A}{dE_{
m g}}(E_{
m g}) imes S(t)$$

Gives the number of generated nuclei per burst


S(t) describes the **evolution of sources** in time (or redshift).

Hypothesis: S(t) follows the Star Formation rate density

$$S(t) = k \times SFRd(t)$$

Extracted from Biteau (2021) Astrophys. J. Suppl. 256

Gives the number of burst at a time t

What are the free parameters?

Inject nuclei at sources

- → Y Power of the power law of the injected spectrum at the sources
- → R_{cut} Cut in injection
- **E_xk** Injected energy per injected stellar mass
- → E_{La}×k Injected energy per injected stellar mass
- **E**_N×k Injected energy per injected stellar mass
- **E**_{si}**×k** Injected energy per injected stellar mass
- **E**_{**E**₀}**×k** Injected energy per injected stellar mass

 $u = \sum_{A} E_A k \times \frac{\rho_*(z=0)}{(1-R)}$

The total energy

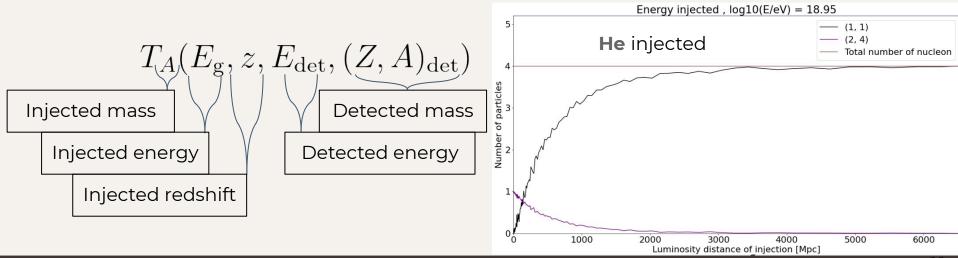

density

 $[E_A] = \text{erg per source} \quad [k] = \text{Number of sources per M}_{\odot}$

Inject nuclei at sources Propagation

Comparison with spectrum & composition

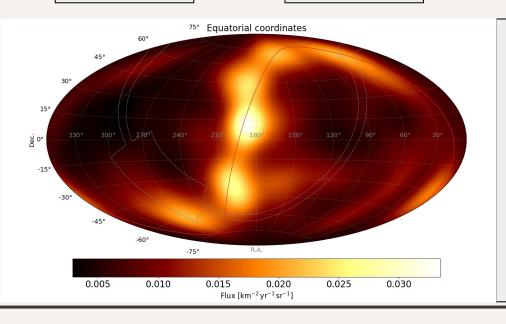
Best-fit scenario



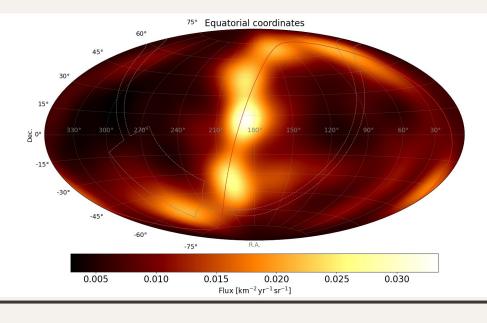
Propagation: Tensor formalism

Propagation

- → SimProp simulations of 2 500 000 nuclei per injected A
- → Nuclei propagate through CMB & EBL.
- → Store in five 4D tensor.
- Tensor gives the average number of detected nuclei per detected energy

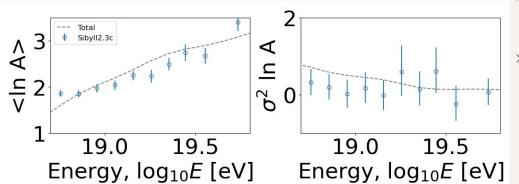

- **EBL:** Gilmore et al. 2012 fiducial
- Photodisintegration cross sections: PSB (Puget et al.)
- Photoproduction of pion: EBL+CMB

Inject nuclei at sources Propagation


Comparison with spectrum & composition

Best-fit scenario

Best-fit scenario


Combined Fit: Minimization

Comparison with spectrum & composition

→ Tensor is contracted to compute the flux of each detected nuclei

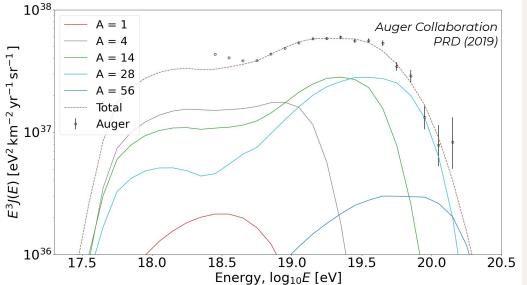
$$J_{A}(E) = \frac{c}{4\pi} \sum_{A_{g}} \sum_{E_{g}} \sum_{z=0}^{z=2.5} \Delta z \left| \frac{\Delta t}{\Delta z} \right| S(z) \times \frac{dN_{A_{g}}}{dE_{g}} \times T_{A}(E_{g}, z, E_{\text{det}}, (Z, A)_{\text{det}}) \Delta E_{g}$$

→ Compare to <In A> and σ^2 In A using Gaussian likelihood

$$\mathcal{L}_{A} = \prod_{j} \frac{1}{\sigma(\langle \ln_{A} \rangle)_{j}^{\text{data}} \sqrt{2\pi}}$$

$$\times \exp\left(-\frac{1}{2} \left(\frac{\langle \ln_{A} \rangle_{j}^{\text{data}} - \langle \ln_{A} \rangle_{j}^{\text{model}}}{\sigma(\langle \ln_{A} \rangle)_{j}^{\text{data}}}\right)^{2}\right)$$

$$\times \frac{1}{\sigma(\sigma^{2} \ln_{A})_{j}^{\text{data}} \sqrt{2\pi}} \times \exp\left(-\frac{1}{2} \left(\frac{\sigma^{2} \ln_{A} j_{j}^{\text{data}} - \sigma^{2} \ln_{A} j_{j}^{\text{model}}}{\sigma(\sigma^{2} \ln_{A})_{j}^{\text{data}}}\right)^{2}\right)$$


→ The **goodness of fit** is given by the deviance:

$$D_{\rm A} = -2 \ln \mathcal{L}_{\rm A} / \mathcal{L}_{\rm A}^{\rm sat}$$

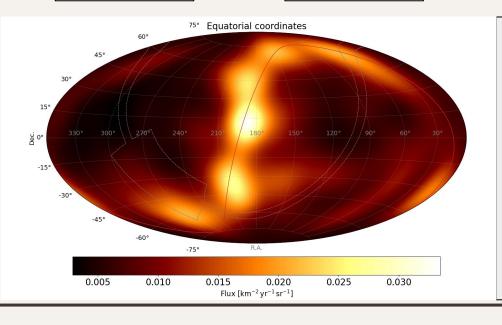
Combined Fit: Minimization

Comparison with spectrum & composition

- → Tensor is contracted to compute the flux
- → Compare to Auger spectrum using Gaussian likelihood

$$\mathcal{L}_{\rm J} = \prod_{j} \frac{1}{\sigma_{j}^{\rm data} \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{J_{j}^{\rm data} - J_{j}^{\rm model}}{\sigma_{j}^{\rm data}}\right)^{2}\right)$$

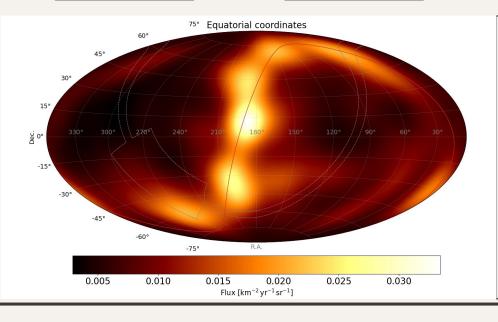
→ Goodness of fit given by the deviance


$$D_J = -2 \ln \mathcal{L}_J / \mathcal{L}_J^{\text{sat}}$$

$$D_{\text{tot}} = D_{\text{J}} + D_{\text{A}}$$

Inject nuclei at sources Propagation

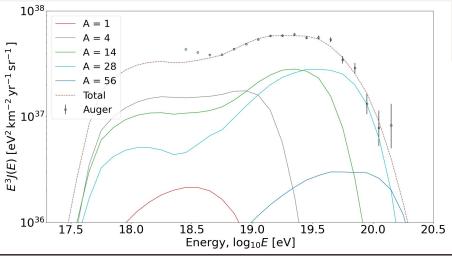
Comparison with spectrum & composition


Best-fit scenario

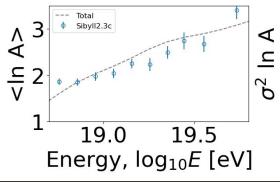
Inject nuclei at sources

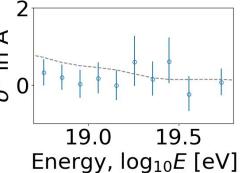
Propagation with spectrum & composition

Best-fit scenario


Looking at arrival directions

Comparison


Combined Fit: Best-fit scenario


Comparison with spectrum & composition

R_cut	γ	E _H ×k [A.U]	E _{He} × k [A.U]	E _N ×k [A.U]	E _{si} × k [A.U]	E _{Fe} × k [A.U]	
18.2	-1.2	1.3	11.1	10	6.3	0.5	

D _J (num. of points)	D _A (num. of points)	
18.9 (15)	20 (20)	

Vous cherchez des huîtres! Choisissez LA FERME La ferme des baleines! Livraison

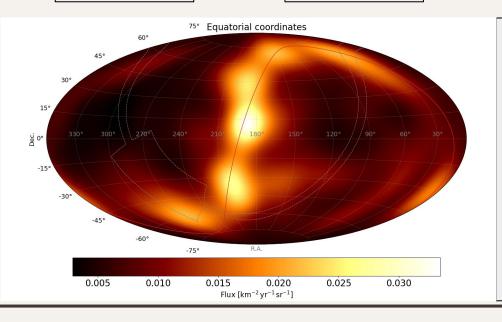
offerte;) https://www.la-ferme-des-baleines.com

NOS FORMULES LIVRAISONS:

Partout en France

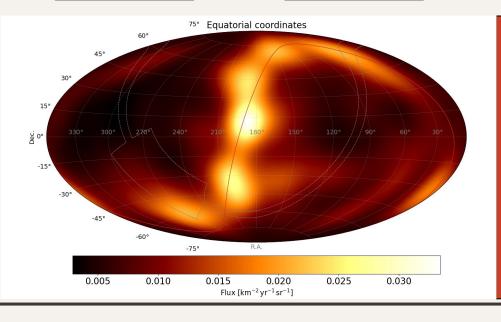
- Forfait livraison de 19€ pour toute commande comprenant au moins une bourriche d'huîtres ou de la laitue de mer fraîche salée - via Chronofood.
- frais via Colissimo.
- · Commande en ligne ou par téléphone 05 46 29 54 43.

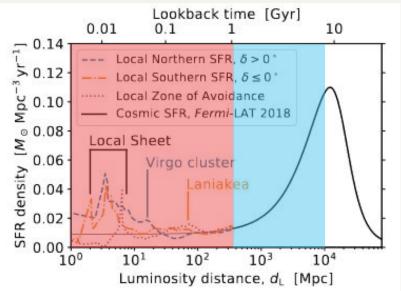
Ré & La Rochelle


- Livraison offerte pour vos achats de plus de 80€
- Commande par téléphone 05 46 29 54 43 uniquement.

Inject nuclei at sources Propagation

Comparison with spectrum & composition

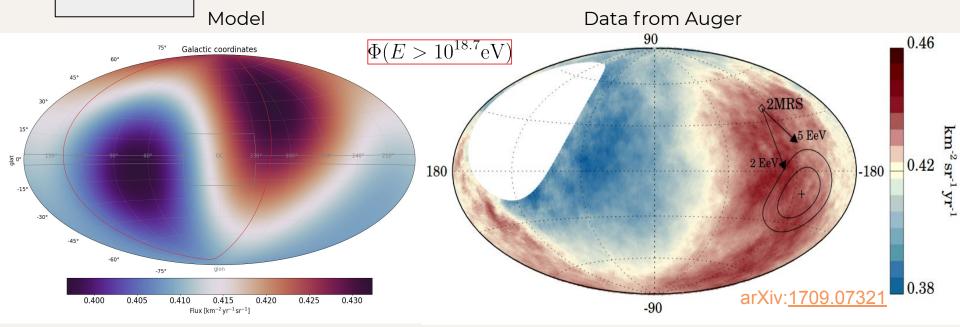

Best-fit scenario


Comparison with spectrum & composition

Best-fit scenario

Consequences on arrival directions

- → **Split** the code in 2
- → Uses the full Catalogue of Biteau(2021) Astrophys.J.Suppl. 256


- → Compute the flux for each galaxy from the catalogue (~400 000)
- → Compute the flux as before, from z=0.08 to z=2.5

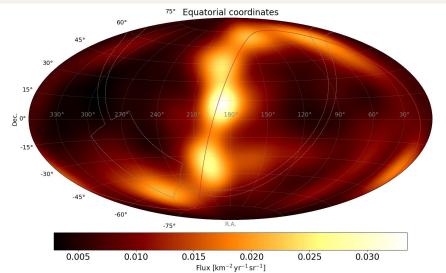
$$J_{\rm A}(E)|_{\rm Gal} = \frac{1}{4\pi d_{\rm L}^2} \sum_{A_{\rm g}} \sum_{E_{\rm g}} S(z_{\rm Gal}) \times \frac{dN_{\rm Ag}}{dE_{\rm g}} \times T_A(E_{\rm g}, z, E_{\rm det}, (Z, A)_{\rm det}) \Delta E_{\rm g}$$

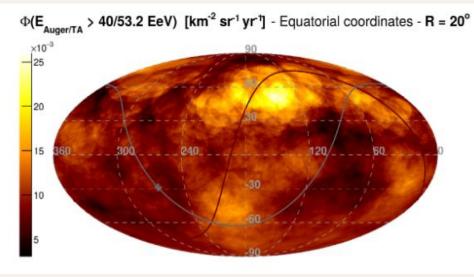
$$J_{\rm A}(E)|_{\rm z=0.08\to 2.50} = \frac{c}{4\pi} \sum_{A_{\rm g}} \sum_{E_{\rm g}} \sum_{z=0.08}^{z=2.50} \Delta z \, \left| \frac{\Delta t}{\Delta z} \right| S(z) \times \frac{dN_{\rm A_{\rm g}}}{dE_{\rm g}} \times T_{\rm A}(E_{\rm g}, z, E_{\rm det}, (Z, A)_{\rm det}) \Delta E_{\rm g}$$

$$J_{A}(E) = J_{A}(E)|_{z=0.08 \to 2.50} + \frac{J_{A}(E)|_{z=0.0 \to 0.08}}{\sum_{Gal} J_{A}(E)|_{Gal}} J_{A}(E)|_{Gal}$$

- → Compute the flux in each pixel
- → Do a **top-hat smoothing** with 45° radius

Looking at arrival directions


- → Compute the flux in each pixel
- → Do a top-hat smoothing with 10° radius

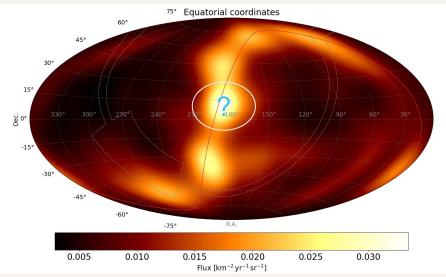

Dominated by Laniakea, Shapley cluster, Virgo Cluster.

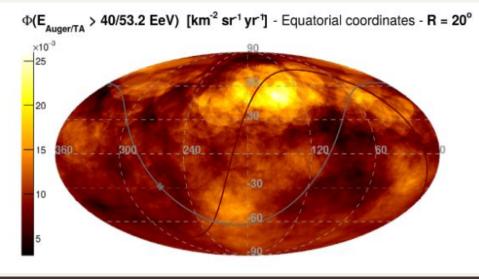
Model

$$\Phi(E > 10^{19.6} \text{eV})$$

Data

Looking at arrival directions

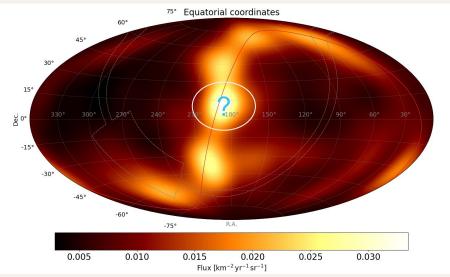

- → Compute the flux in each pixel
- → Do a top-hat smoothing with 10° radius


Dominated by Laniakea, Shapley cluster, Virgo Cluster.

Model

$$\Phi(E > 10^{19.6} \text{eV})$$

Data


Looking at arrival directions

- → Compute the flux in each pixel
- → Do a top-hat smoothing with 10° radius

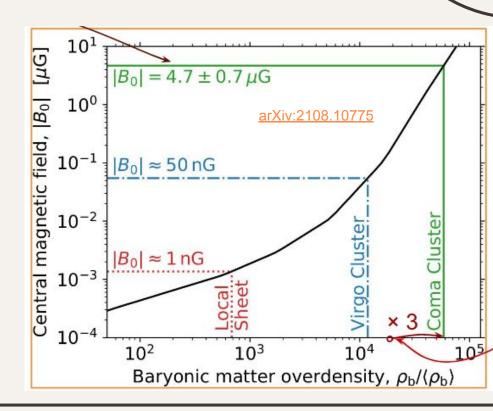
Dominated by Laniakea,
 Shapley cluster, Virgo
 Cluster.

Model

$$\Phi(E > 10^{19.6} \text{eV})$$

Conclusion:

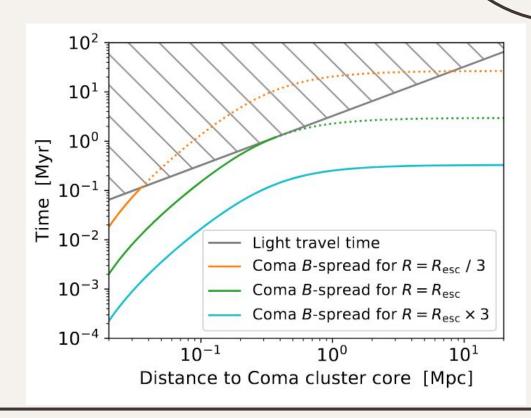
→ Model that can describe the expected flux above any energy!


Question:

→ Does UHECR escape from all clusters?

Compute magnetic field of clusters

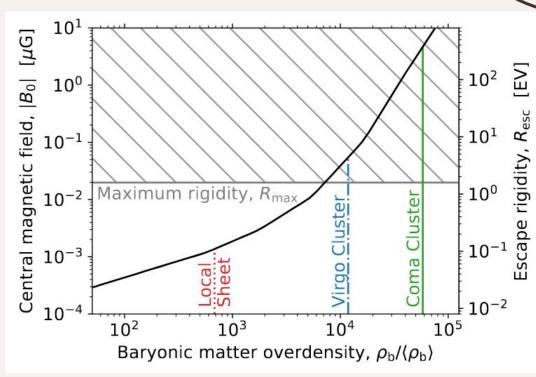
Idea:


- → Compute cluster's magnetic field from baryonic matter overdensity based on MHD simulation (Donnert+ 2018)
- → Check if UHECR can escape from the magnetic field of the cluster

Time of spreading vs light travel time

Hypothesis:

- → If the time spend in the cluster due to magnetic field spread is lower than the light travel time → UHECR escape.
- → If the time is equal or bigger → UHECR get stuck


Magnetic confinement

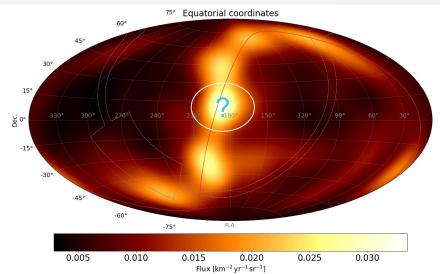
Consequences:

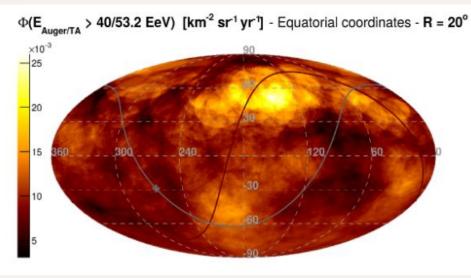
- → The magnetic field will confine UHECR:
- → If UHECR are injected up to a maximum rigidity R_{max}, the clusters with an escape rigidity above R_{max} do not contribute.
- → **Conclusion:** Some clusters cannot be seen

Definition rigidity:

R = E/Z

Looking at arrival directions

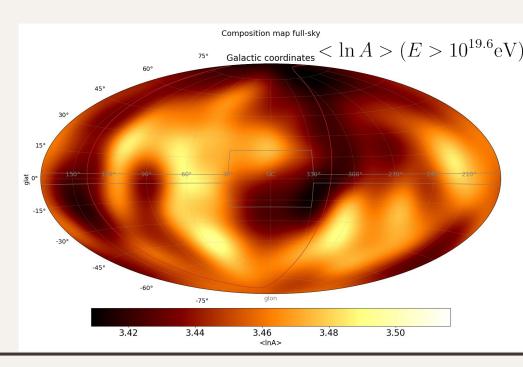

- → Compute the flux in each pixel
- → Do a top-hat smoothing with 10° radius


Dominated by Laniakea, Shapley cluster, Virgo Cluster.

Model

$$\Phi(E > 10^{19.6} \text{eV})$$

Data



Conclusion

→ An astrophysical model that shows consequences on arrival directions

What's next?

- → We are implementing full X_{max} distribution into the code
- → Magnetic confinement & screening is being implemented
- → Give a composition map

Pub

Je contrôle les télescopes du plus grand observatoire à rayons cosmiques au monde!

992 vues • il y a 5 mois

Je suis doctorant en astrophysique des hautes énergies. Dans cette vidéo, je vous embarque avec moi en Argentine dans la ...

Vous voulez savoir comment se passe un shift à l'observatoire Auger! Allez voir ma vidéo!:D

Thank you for your attention