Energy Reconstruction with Recurrent Neural Networks

Georges Aad, Thomas Calvet, Nemer Chiedde, Etienne Fortin, Lauri Laatu, Emmanuel Monnier

18.10.2021

Content

1. Background

2. RNN Architecture

3. Network Optimization and Performance

4. Conclusion

The ATLAS Experiment at the Large Huitre Collider (LHC)

General purpose detector

- The ATLAS Experiment is one of the general purpose detectors at the Large Huitre Collider
 - Consists of a tracker, electromagnetic and hadronic calorimeters and muon detectors
- Oyster-Oyster collisions every 25ns (40MHz) referred to as bunch crossings (BCs)
 - Some collisions create pearls: real-time event selection from 40MHz to store pearls at 10kHz

Liquid Argon Calorimeter

Energy reconstruction in the LAr calorimeter

- Liquid Argon Calorimeter (LAr) mainly measures the energy deposited by electromagnetically interacting particles
 - Consisting of \approx 180 000 calorimeter cells
- Passing particles ionize the material
 - Bipolar pulse shape with total length of up to 750 ns (30 BCs)
 - Pulse is sampled and digitized at 40MHz
- Energy reconstruction is done real-time and used in triggering decision
 - Using the digitized samples from the pulse

The Phase-II Upgrade of the LHC

Upgrade of the ATLAS experiment

- The High Luminosity LHC (HL-LHC) is a important milestone for particle physics
 - Increase the luminosity to study rare processes
 - Increase the collision rate to up to 200 simultaneous p-p collisions (pileup) per bunch crossing (BC)
- The detectors will be upgraded to cope with the high collision rate at the HL-LHC
 - In particular the ATLAS calorimeter readout electronics will be completely replaced

Energy Reconstruction

Energy reconstruction in the LAr calorimeter

- Current energy reconstruction uses optimal filtering algorithm with maximum finder (OFMax)
 - Using four samples around pulse shape peak
 - Assuming perfect pulse shape
- High pileup leads to higher rate of overlapping pulse shapes
 - Distorted bipolar shape \rightarrow significantly decreased performance of OFMax
- Energy is computed real-time at 40MHz
 - Need to use electronic boards based on FPGAs
- Phase-II electronics with high-end FPGAs
 - Increased computing capacity
 - Improved online energy reconstruction using machine learning based methods
- Constraints from running on FPGAs
 - Latency, frequency and occupancy
 - Small networks needed

Table of Contents

1. Background

2. RNN Architecture

3. Network Optimization and Performance

4. Conclusion

RNN Architecture

Timeseries processing

- Recurrent Neural Networks (RNNs) are designed to process time series data
- RNNs consists of neural network layers that process by combining new time input with past processed state
- Vanilla RNN is the smallest RNN structure
- Long Short-Term Memory (LSTM) network for efficiently handling past information

RNNs for Energy Reconstruction

Using a many-to-one and many-to-many networks for energy reconstruction

- Use digitized samples as inputs for the recurrent network
- Sliding window
 - Full sequence split into overlapping subsequences with a sliding window
 - One energy prediction per subsequence
 - Network receives limited amount of data in past
 - Possible for Vanilla RNN and LSTM
- Single cell
 - Use the LSTM cell to process all digitized samples in one continuous chain instead of a sliding window
 - Full history of events available
 - Possible only for LSTM

Table of Contents

1. Background

2. RNN Architecture

3. Network Optimization and Performance

4. Conclusion

Network Optimization

Find the smallest well performing network, example for sliding window LSTM

- Use standard deviation and 98% range to compare energy resolution
 - Non-gaussian distribution of the energy resolution
- Optimization of the energy resolution while keeping the network size under control
 - Vary the network parameters: internal dimension (units), sliding window size (timesteps)
 - Network trained with simulated data of a single LAr calorimeter cell using the AREUS software

RNN Performance

Resolution as a function of gap to previous energy deposit in BCs

- Vanilla 89 params, LSTM 496 params
- Clear performance decrease with OFMax at low gap
- All RNNs perform better with overlapping events

Network Robustness

Against pileup (μ) for Vanilla RNN

- Resilience against varying pileup (simultaneous p-p collisions per BC)
- Train 276 models with different pileup rates, cross evaluate
- Effect of training data is negligible

Table of Contents

- 1. Background
- 2. RNN Architecture
- 3. Network Optimization and Performance
- 4. Conclusion

Conclusion

Energy reconstruction using recurrent neural networks

- Energy reconstruction with RNNs overperform legacy algorithms in Phase-II conditions
 - Better energy resolution overall
 - Better recovery of energy resolution with overlapping signals
- Strict resource and latency constraints limit the size of the networks
 - Energy resolution optimized while keeping the network size small
 - RNN training methods suitable for FPGA deployment
 - Next Nemer will talk about the implementation on FPGAs
- Next steps: performance evaluation in full detector simulation
- Paper published available Here

