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INTRODUCTION

Generally, the matrix model is defined by the following partition
function:

Z =

∫
dN

2
AdN

2
BdN

2
C . . . e−trV(A,B,C,... ) (1)

Many applications: mesoscopics, 2D QG models, stat. mechanics on
planar graphs, QCD ...

This work is about solving large N matrix model by bootstrap method.
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BOOTSTRAP

Basically bootstrap method is solving problems in theoretical
physics by optimization theory.

∙ Quadratic programming:

min y
s.t. y = x2 + 3x+ 1

(2)

∙ Linear programming:

max 300x+ 100y
s.t. 6x+ 3y ≤ 40

x− 3y ≤ 0
x+ 1

4y ≤ 4

(3)
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SEMI-DEFINITE PROGRAMMING

∙
min 2x+ 3y

s.t.
(
x 1
1 y

)
⪰ 0 (4)

∙ Linear programming and Quadratic programming are special
situations of Semi-definite Programming(SDP).

∙ They all fall into the class of Convex Optimization.
∙ Generally we cannot solve large-scale non-convex optimization
problem.
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A SIMPLEST BOOTSTRAP MODEL

Consider the single-variable integral:

Z =

∫ ∞

−∞
exp(−x

2

2 − gx
4

4 )dx, g > 0, (5)

We want to compute its k-moment for a given g:

Wk =
1
Z

∫ ∞

−∞
xk exp(−x

2

2 − gx
4

4 )dx (6)

We have a lot of choices to do the integration!
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LOOP EQUATIONS AND GLOBAL SYMMETRIES

Loop equations are Dyson-Schwinger equations. They can be derived
by make the variable translation x→ x+ ϵ or in our model by
integration by part:

(k+ 1)Wk = Wk+2 + gWk+4 (7)

Global symmetry:
Wk = 0, for odd k (8)

The conclusion is all the k-moments are linear functions ofW2, so
correlation matrix is a linear function ofW2.
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CORRELATION MATRIX

The bootstrap method is that considering the expectations of square
of polynomials are always positive semi-definite:

1
Z

∫ ∞

−∞
(
∑

αixi)2 exp(−
x2
2 − gx

4

4 ) ≥ 0, ∀α (9)

This is a quadratic form in α, its positivity is equivalent to:

W =


W0 W1 W2 . . .

W1 W2 W3 . . .

W2 W3 W4 . . .
...

...
... . . .

 ⪰ 0 (10)

This condition will be referred as the positivity of correlation matrix.
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BOOTSTRAP

We can solve the Semi-Definite Programming(SDP) maximizing or
minimizingW2 constrained by a truncation of the positivity of
correlation matrix:

min ormax W2 (11)
WΛ ⪰ 0 (12)

HereWΛ is the top (Λ + 1)× (Λ + 1) sub-matrix ofW.
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RESULT

Analytic result:

W2 =
π
(
−I− 1

4

(
1
8g

)
+ (4g+ 1)I 1

4

(
1
8g

)
− I 3

4

(
1
8g

)
+ I 5

4

(
1
8g

))
2
√
2gK 1

4

(
1
8g

) (13)

For g = 1, Λ = 10, we can get the numerical bootstrap result:

0.4679137 ≤ W2 = 0.4679199170 ≤ 0.4679214 (14)
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RESULT
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BOOTSTRAP IN GENERAL

A lot of problems in physics concerns with the expectation values of
some operators under a probability measure:

⟨O⟩ =
∫

Odµ (15)

∙ Choose the basis of operators such that they are in some sense
complete(or their linear span is dense in the space of operators).

∙ Impose some known equality and positivity conditions on these
operators, as well as the assumption of global symmetry.

∙ Set a numerical truncation of the basis, equalities and
inequalities. Then we can get rigorous upper bounds and lower
bounds on the expectation values.
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ADVANTAGES

1. We don’t necessarily know or truly understand the probability
measure.
∙ We can actually bootstrap the probability measure. For example, the
recent works on quantum mechanics bootstrap.[Han et al., 2020,
Berenstein and Hulsey, 2021, Bhattacharya et al., 2021]

∙ We always have functional integrals in QFT. Sometimes they are not
mathematically well-defined or they are not UV-complete, but hopefully
we can still get some rigorous bounds on the dynamical quantities.

2. The symmetry of the problem is easier to implement.
3. The results will be rigorous. Increasing the cutoff will only improve
the bound.
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ONE MATRIX MODEL

We consider the following one matrix model defined on integral over
Hermitian matrix:

ZN =

∫
dN

2
M e−NtrV(M), V(x) = 1

2µx
2 +

1
4gx

4, (16)
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LARGE N MATRIX MODEL

∙ Large N factorization: expectation values of a double trace
operator is dominated by the product of the expectations of the
single trace operators.

∙ Tunnelling effect is exponentially suppressed. We only need a deep
enough local minima in the potential to make the model sensible.

Z =

∫ ∞

−∞
exp(−x

2

2 − gx
4

4 )dx, g ≥ 0, (17)

Z = lim
N→∞

∫
dN

2
M e−NtrV(M), V(x) = 1

2x
2 +

1
4gx

4, g ≥ − 1
12 (18)
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BOOTSTRAPPING LARGE N ONE-MATRIX MODEL

This is a repetition of Lin’s work[Lin, 2020]. The partition function is
chosen to be:

Z = lim
N→∞

ZN = lim
N→∞

∫
dN

2
M e−NtrV(M), V(x) = 1

2µx
2 +

1
4gx

4, (19)

The integration is over Hermitian matrix.

The basis of operators are:

Wk = ⟨TrMk⟩ = lim
N→∞

∫ dN2M
ZN

1
N trMke−NtrV(M). (20)

And the loop equations:

µWk+1 + gWk+3 =
k−1∑
l=0

Wl Wk−l+1, k = 1, 2, 3, ... (21)

The positivity of correlation matrix is the same.
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BOOTSTRAPPING LARGE N ONE-MATRIX MODEL

This is the result of bootstrapping µ = 1 and Z2 symmetry preserving
solutionW1 = 0. From the loop equation and symmetry assumption,
all moments are polynomial functions ofW2.
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A REMARK

The loop equations are quadratic equations. So this is a non-linear
SDP, i.e. a kind of non-convex optimization problems. In general we
cannot solve large-scale non-convex optimization problems directly.

Due to the simplicity of one-matrix model, we don’t really have
trouble with this non-convexity here. But we will have trouble when
dealing with multi-matrix model.
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MULTI-MATRIX BOOTSTRAP: AN EXAMPLE

Here we propose to study the following two-matrix model:

Z = lim
N→∞

∫
dN

2
AdN

2
B e−Ntr(−h[A,B]2/2+A2/2+gA4/4+B2/2+gB4/4) (22)

The integration is over Hermitian matrix. To the best of our
knowledge, this model with general g and h value, is not solvable!

The cutoff Λ = 4 is the lowest order where the quadratic loop
equations appear.

At this cutoff, the longest operator has length 8.
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CUTOFF=4: OPERATORS

This model has a Z32 symmetry:
A→ −A
B→ −B
A↔ B

(23)

and a A→ AT, B→ BT symmetry which makes all the expectations
real. Up to these global symmetry, with cutoff=4, we have 20
operators:

TrA2, TrA4, TrA2B2, TrABAB, TrA6, TrA4B2, TrA3BAB, TrA2BA2B, TrA8,
TrA6B2, TrA5BAB, TrA4BA2B, TrA4B4, TrA3BA3B, TrA3BAB3, TrA3B2AB2,
TrA2BABAB2, TrA2BAB2AB, TrA2B2A2B2, TrABABABAB .

(24)
18



CUTOFF=4: LOOP EQUATIONS

We first write down the loop equations by:∫
dN

2
AdN

2
B tr(∂M(Word × e−Ntr V(A,B)) = 0, M = {A,B} (25)

and introduce the notation:

β = (TrA2)2 = (TrB2)2 = TrA2TrB2. (26)

We have 14 loop equations, they are algebraically independent.
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CUTOFF=4: LOOP EQUATIONS

1 = TrA2 + gTrA4 − h(−2TrA2B2 + 2TrABAB)
0 = −2TrA2 + TrA4 − h(2TrA3BAB− 2TrA4B2) + gTrA6
0 = −TrA2 + TrA2B2 − h(−TrA2BA2B+ 2TrA3BAB− TrA4B2) + gTrA4B2
0 = −h(2TrA2BA2B− 2TrA3BAB) + gTrA3BAB+ TrABAB
β = −2TrA4 + TrA6 − h(2TrA5BAB− 2TrA6B2) + gTrA8
β = −TrA2B2 + TrA4B2 − h(−TrA3B2AB2 + 2TrA3BAB3 − TrA4B4) + gTrA6B2
0 = −2TrA2B2 − h(−TrA2B2A2B2 + 2TrA2BABAB2 − TrA3B2AB2) + TrA4B2 + gTrA6B2
0 = −TrA4 + TrA4B2 + gTrA4B4 − h(−TrA4BA2B+ 2TrA5BAB− TrA6B2)
0 = TrA3BAB− h(2TrA2BAB2AB− TrA2BABAB2 − TrA3BAB3) + gTrA5BAB− TrABAB
0 = TrA3BAB+ gTrA5BAB− 2TrABAB− h(−2TrA2BABAB2 + 2TrABABABAB)
0 = TrA3BAB+ gTrA3BAB3 − h(−TrA3BA3B+ 2TrA4BA2B− TrA5BAB)
0 = gTrA3BA3B+ TrA3BAB− h(2TrA3B2AB2 − 2TrA3BAB3)
0 = −TrA2B2 + TrA2BA2B− h(−TrA2BAB2AB+ 2TrA2BABAB2 − TrA3B2AB2) + gTrA4BA2B
β = TrA2BA2B+ gTrA3B2AB2 − h(2TrA3BA3B− 2TrA4BA2B).

(27)
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CUTOFF=4: CORRELATION MATRIX

Under the Z32 symmetry our correlation matrix decouples into a
block-diagonal matrix with three blocks. They are, respectively, the
inner product1 matrix of even-even words:

I,AA,BB,AAAA,AABB,ABAB,ABBA,BAAB,BABA,BBAA,BBBB (28)

odd-odd words:

AB,BA,AAAB,AABA,ABAA,ABBB,BAAA,BABB,BBAB,BBBA (29)

and even-odd words:

B,AAB,ABA,BAA,BBB . (30)

1Here inner product of O1 and O2 is defined to be ⟨TrO†
1O2⟩.
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CUTOFF=4: CORRELATION MATRIX

For example, the block for the even-odd words reads:
TrA2 TrA4 TrA2B2 TrABAB TrA2B2
TrA4 TrA6 TrA4B2 TrA3BAB TrA4B2

TrA2B2 TrA4B2 TrA4B2 TrA3BAB TrA2BA2B
TrABAB TrA3BAB TrA3BAB TrA2BA2B TrA3BAB
TrA2B2 TrA4B2 TrA2BA2B TrA3BAB TrA4B2

 (31)

All the constraints are convex except the quadratic loop equations!
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RELAXATION

Most naively we treat all the quadratic terms as independent
variables, and eliminate them from the loop equations. Actually we
have better choice.
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RELAXATION

Suppose we have only three quadratic “loop equations”:
x2 = T1
y2 = T2
xy = T3

(32)

Here Ti =
∑

j q
j
i wj, (i = 1, 2, 3) denote linear combinations of some

other variables w1,w2, . . . . We can relax them to make them convex
by replacing x2 = T1 with x2 ≤ T1 or, in the positive semi-definite
matrix form, (

1 x
x T1

)
⪰ 0 . (33)
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RELAXATION

But the same operation cannot be reproduced for equation xy = T3,
since neither xy ≤ T3 nor xy ≥ T3 is convex 2. It is tempting to
consider the positive semi-definite combinations:

(x+ αy)2 ≤ T1 + α2T2 + 2αT3, ∀α ∈ R . (34)

In its turn, it is equivalent to:

Det

1 x y
x T1 T3
y T3 T2

 ≥ 0. (35)

2Because the bilinear form xy is not positive semi-definite.
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RELAXATION

We come to the conclusion that:1 x y
x T1 T3
y T3 T2

 ⪰ 0. (36)
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RELAXATION

Our general strategy is, we treat the quadratic terms in the loop
equations as independent variable, and replace the algebraic
equality by the convex inequality:

X = xxT (37)

to:

R =

(
1 xT

x X

)
⪰ 0. (38)

In our example, at cutoff=4, the relaxation matrix is:(
1 TrA2

TrA2 β

)
⪰ 0. (39)

After setting g = 1,h = 1

0.393566 ≤ TrA2 ≤ 0.431148 . (40)
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RESULT



0.4217 0.4218 0.4219 0.4220 0.4221
0.3332

0.3333

0.3334

0.3335

0.3336

+

Λ = 11 :
{
0.421783612 ≤ t2 ≤ 0.421784687
0.333341358 ≤ t4 ≤ 0.333342131

6 digits precision (41)
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CONCLUSIONS AND PROSPECTS

∙ Matrix bootstrap- an interesting alternative to Monte Carlo for
computations of functional integrals. Gives exact inequalities on
physical quantities. Efficient solution of large N loop equations.

∙ To overcome the non-convexity of nonlinear loop equations, we
proposed to use relaxation.

∙ Important target-large N lattice Yang-Mills theory via
Migdal-Makeenko loop equations. Pioneering paper of
Anderson-Kruzcenski[Anderson and Kruczenski, 2017], but the tools
need to be improved. We are still far from the universality and
precision of Monte Carlo, but at least it is an alternative.
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QUESTIONS?
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