

# Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs

November 19, 2021

Etienne FORTIN

CPPM and Dresden LAr group

ML for ATLAS LAr Calorimeter



2 Physics and neural network design



4 Example of optimisation in Intel HLS

#### ATLAS

ATLAS : a general purpose detector at LHC



- Efficient data collection
- High quality reconstruction for all p-p products



#### Liquid Argon Calorimeter

• Responsible for measuring energies of  $e^{\pm}$  ,  $\gamma$  and forward hadrons (close to beam axis)



#### In data taking conditions :



# Liquid Argon Calorimeter

- OF algorithm cannot correct past events overlapping current event with small gap
- The Gap is the distance between two energy deposits



High Luminosity (HL-)LHC : crucial data for HEP analyses in the next two decades

- High pile-up ( up to 200, now 30) will cause more overlapped and distorted pulse
- To keep the performance we need to improve the algorithms for energy computation



#### LAr Phase 2 upgrade



• The resources are now suffisant to implement Artificial Intelligence Algorithm in LAr Signal Processing boards or fpga

#### Energy inference using Convolutional Neural Networks

Convolutional Neural Netwwork: succession of filters (layers) extracting data properties



#### **CNN** Inputs



# Triggering with CNNs



Trigger CNN : trained to detect deposits  $3\sigma$  above noise (240 MeV) using pulse samples for 8 bunch-crossings



# Triggering with CNNs



#### Energy inference using CNNs



#### Add CNN energy reconstruction layers

#### Recurrent Neural Network (RNN) architectures

RNN : set of operations (internal NN) called upon arrival of each new data



RNN are natural fit for inference of LAr energy deposits

Two RNNs internal architectures explored

- Optimized for lower paramter count
- Long Short-Term Memory (LSTM) : 10 Internal dimensions
- Vanilla-RNN : 8 Internal dimensions



Complexity, expected size on hardware

#### RNN applications to energy inference : 2 methods



#### Performance

ARFUS Simulation

EMB Middle (n.e) = (0.5125.0.0125)

and a 140 E<sup>ftus</sup> > 240 MeV

- Comparisons on single LAr cell simulations (AREUS software) :
  - HL-LHC conditions with pile-up of 140

All methods outperform legacy algorithm. Clear improvement of overlapping signals.

v10

1.6

0.4

Gap (BC)



#### More receptive fields in time

AREUS Simulation

Legacy algorithm :

5 BC in the peak

#### **FPGA** Implementations

High speed evaluation => FPGA



$$\begin{array}{c} (y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \\ y_{3} \\ y_{4} \\ y_{4} \\ y_{4} \\ y_{4} \\ y_{5} \\ y_{5} \\ y_{6} \\ y_{7} \\ y_{7}$$



## FPGA Implementations: CNNs



- Configured by Keras models
- Optimised for low latency
  - CNN architecture mapped to DSPs chains
  - pipelined inputs

#### Maximize DSP usage (DSP chains) for fast weight multiplication



### FPGA Implementations: CNNs



- Configured by Keras models
- Optimised for low latency
  - CNN architecture mapped to DSPs chains
  - pipelined inputs

# Input pipeline : reuse hardware as soon as available to deal with continuous flow of data.



## FPGA Implementations: RNNs



Implemented in HLS to improve flexibility

Etienne FORTIN (CPPM)

ML for ATLAS LAr Calorimeter

## FPGA Implementations: Results

- Compare Intel Stratix10 simulation (Quartus 21.1 and Modelsim10.7c) to Keras/Tensorflow:
  - Pulse samples from AREUS LArcell data
- Optimized fixed-point and LUT representations :
  - minimize resources VS compatibility software/firmware
  - 18 bits total (Stratix10 : 18x19 DSP)
    - 10 decimal for CNNs
    - 13 decimal for RNNs



acceptable resolution from the quantification , lower than what is expected from the noise

## DSP usage, theory



#### LSTM Network

- 4 Gates/cell (0 for first since recurrent state = 0)
- 7 Vector to Vector or scalar to vector multiplication per cell
- 1 Vector multiplication for output
- TOTAL:  $4 * Hdim^2 * (Ncell 1) + 7 * Hdim * Ncell + Hdim$
- Vanilla
  - 1 Gates/cell (0 for first since recurrent state = 0)
  - 1 scalar to vector multiplication per cell
  - 1 Vector to Vectormultiplication for output
  - TOTAL:  $Hdim^2 * (Ncell 1) + Hdim * Ncell + Hdim$

#### Results

# Number of channels that can fit in Stratix 10 SX FPGA (DSP/channel)

| nidden     |             | wuitipiexing |             |             |            |            |             |            |             |             |            |             |             |            |             |
|------------|-------------|--------------|-------------|-------------|------------|------------|-------------|------------|-------------|-------------|------------|-------------|-------------|------------|-------------|
| Dimensions | 1           | 2            | 3           | 4           | 5          | 6          | 7           | 8          | 9           | 10          | 11         | 12          | 13          | 14         | 15          |
| Dimensions | 40 MHz      | 80 MHz       | 120 MHz     | 160 MHz     | 200 MHz    | 240 MHz    | 280 MHz     | 320 MHz    | 360 MHz     | 400 MHz     | 440 MHz    | 480 MHz     | 520 MHz     | 560 MHz    | 600 MHz     |
| 2          | 84 (136.0)  | 169 (68.0)   | 254 (45.3)  | 338 (34.0)  | 423 (27.2) | 508 (22.7) | 592 (19.4)  | 677 (17.0) | 762 (15.1)  | 847 (13.6)  | 931 (12.4) | 1016 (11.3) | 1101 (10.5) | 1185 (9.7) | 1270 (9.1)  |
| 3          | 45 (252.0)  | 91 (126.0)   | 137 (84.0)  | 182 (63.0)  | 228 (50.4) | 274 (42.0) | 320 (36.0)  | 365 (31.5) | 411 (28.0)  | 457 (25.2)  | 502 (22.9) | 548 (21.0)  | 594 (19.4)  | 640 (18.0) | 685 (16.8)  |
| 4          | 28 (400.0)  | 57 (200.0)   | 86 (133.3)  | 115 (100.0) | 144 (80.0) | 172 (66.7) | 201 (57.1)  | 230 (50.0) | 259 (44.4)  | 288 (40.0)  | 316 (36.4) | 345 (33.3)  | 374 (30.8)  | 403 (28.6) | 431 (26.7)  |
| 5          | 19 (580.0)  | 39 (290.0)   | 59 (193.3)  | 79 (145.0)  | 99 (116.0) | 119 (96.7) | 139 (82.9)  | 158 (72.5) | 178 (64.4)  | 198 (58.0)  | 218 (52.7) | 238 (48.3)  | 258 (44.6)  | 278 (41.4) | 297 (38.7)  |
| 6          | 14 (792.0)  | 29 (396.0)   | 43 (264.0)  | 58 (198.0)  | 72 (158.4) | 87 (132.0) | 101 (113.1) | 116 (99.0) | 130 (88.0)  | 145 (79.2)  | 160 (72.0) | 174 (66.0)  | 189 (60.9)  | 203 (56.6) | 218 (52.8)  |
| 7          | 11 (1036.0) | 22 (518.0)   | 33 (345.3)  | 44 (259.0)  | 55 (207.2) | 66 (172.7) | 77 (148.0)  | 88 (129.5) | 100 (115.1) | 111 (103.6) | 122 (94.2) | 133 (86.3)  | 144 (79.7)  | 155 (74.0) | 166 (69.1)  |
| 8          | 8 (1312.0)  | 17 (656.0)   | 26 (437.3)  | 35 (328.0)  | 43 (262.4) | 52 (218.7) | 61 (187.4)  | 70 (164.0) | 79 (145.8)  | 87 (131.2)  | 96 (119.3) | 105 (109.3) | 114 (100.9) | 122 (93.7) | 131 (87.5)  |
| 9          | 7 (1620.0)  | 14 (810.0)   | 21 (540.0)  | 28 (405.0)  | 35 (324.0) | 42 (270.0) | 49 (231.4)  | 56 (202.5) | 64 (180.0)  | 71 (162.0)  | 78 (147.3) | 85 (135.0)  | 92 (124.6)  | 99 (115.7) | 106 (108.0) |
| 10         | 5 (1960.0)  | 11 (980.0)   | 17 (653.3)  | 23 (490.0)  | 29 (392.0) | 35 (326.7) | 41 (280.0)  | 47 (245.0) | 52 (217.8)  | 58 (196.0)  | 64 (178.2) | 70 (163.3)  | 76 (150.8)  | 82 (140.0) | 88 (130.7)  |
| 11         | 4 (2332.0)  | 9 (1166.0)   | 14 (777.3)  | 19 (583.0)  | 24 (466.4) | 29 (388.7) | 34 (333.1)  | 39 (291.5) | 44 (259.1)  | 49 (233.2)  | 54 (212.0) | 59 (194.3)  | 64 (179.4)  | 69 (166.6) | 74 (155.5)  |
| 12         | 4 (2736.0)  | 8 (1368.0)   | 12 (912.0)  | 16 (684.0)  | 21 (547.2) | 25 (456.0) | 29 (390.9)  | 33 (342.0) | 37 (304.0)  | 42 (273.6)  | 46 (248.7) | 50 (228.0)  | 54 (210.5)  | 58 (195.4) | 63 (182.4)  |
| 13         | 3 (3172.0)  | 7 (1586.0)   | 10 (1057.3) | 14 (793.0)  | 18 (634.4) | 21 (528.7) | 25 (453.1)  | 29 (396.5) | 32 (352.4)  | 36 (317.2)  | 39 (288.4) | 43 (264.3)  | 47 (244.0)  | 50 (226.6) | 54 (211.5)  |
| 14         | 3 (3640.0)  | 6 (1820.0)   | 9 (1213.3)  | 12 (910.0)  | 15 (728.0) | 18 (606.7) | 22 (520.0)  | 25 (455.0) | 28 (404.4)  | 31 (364.0)  | 34 (330.9) | 37 (303.3)  | 41 (280.0)  | 44 (260.0) | 47 (242.7)  |

| × / |     |     |
|-----|-----|-----|
| 1/2 | nıl | ln. |
| va  |     | Id  |
|     |     |     |

| Hidden                                            |            | Multiplexing |                   |             |             |             |             |             |            |            |            |             |             |            |            |
|---------------------------------------------------|------------|--------------|-------------------|-------------|-------------|-------------|-------------|-------------|------------|------------|------------|-------------|-------------|------------|------------|
| Dimensions                                        | 1          | 2            | 3                 | 4           | 5           | 6           | 7           | 8           | 9          | 10         | 11         | 12          | 13          | 14         | 15         |
| Dimensions                                        | 40 MHz     | 80 MHz       | 120 MHz           | 160 MHz     | 200 MHz     | 240 MHz     | 280 MHz     | 320 MHz     | 360 MHz    | 400 MHz    | 440 MHz    | 480 MHz     | 520 MHz     | 560 MHz    | 600 MHz    |
| 2                                                 | 411 (28.0) | 822 (14.0)   | 1234 (9.3)        | 1645 (7.0)  | 2057 (5.6)  | 2468 (4.7)  | 2880 (4.0)  | 3291 (3.5)  | 3702 (3.1) | 4114 (2.8) | 4525 (2.5) | 4937 (2.3)  | 5348 (2.2)  | 5760 (2.0) | 6171 (1.9) |
| 3                                                 | 213 (54.0) | 426 (27.0)   | 640 (18.0)        | 853 (13.5)  | 1066 (10.8) | 1280 (9.0)  | 1493 (7.7)  | 1706 (6.8)  | 1920 (6.0) | 2133 (5.4) | 2346 (4.9) | 2560 (4.5)  | 2773 (4.2)  | 2986 (3.9) | 3200 (3.6) |
| 4                                                 | 130 (88.0) | 261 (44.0)   | 392 (29.3)        | 523 (22.0)  | 654 (17.6)  | 785 (14.7)  | 916 (12.6)  | 1047 (11.0) | 1178 (9.8) | 1309 (8.8) | 1440 (8.0) | 1570 (7.3)  | 1701 (6.8)  | 1832 (6.3) | 1963 (5.9) |
| 5                                                 | 88 (130.0) | 177 (65.0)   | 265 (43.3)        | 354 (32.5)  | 443 (26.0)  | 531 (21.7)  | 620 (18.6)  | 708 (16.2)  | 797 (14.4) | 886 (13.0) | 974 (11.8) | 1063 (10.8) | 1152 (10.0) | 1240 (9.3) | 1329 (8.7) |
| 6                                                 | 64 (180.0) | 128 (90.0)   | 192 (60.0)        | 256 (45.0)  | 320 (36.0)  | 384 (30.0)  | 448 (25.7)  | 512 (22.5)  | 576 (20.0) | 640 (18.0) | 704 (16.4) | 768 (15.0)  | 832 (13.8)  | 896 (12.9) | 960 (12.0) |
| 7                                                 | 48 (238.0) | 96 (119.0)   | 145 (79.3)        | 193 (59.5)  | 242 (47.6)  | 290 (39.7)  | 338 (34.0)  | 387 (29.8)  | 435 (26.4) | 484 (23.8) | 532 (21.6) | 580 (19.8)  | 629 (18.3)  | 677 (17.0) | 726 (15.9) |
| 8                                                 | 37 (304.0) | 75 (152.0)   | 113 (101.3)       | 151 (76.0)  | 189 (60.8)  | 227 (50.7)  | 265 (43.4)  | 303 (38.0)  | 341 (33.8) | 378 (30.4) | 416 (27.6) | 454 (25.3)  | 492 (23.4)  | 530 (21.7) | 568 (20.3) |
| 9                                                 | 30 (378.0) | 60 (189.0)   | <b>91</b> (126.0) | 121 (94.5)  | 152 (75.6)  | 182 (63.0)  | 213 (54.0)  | 243 (47.2)  | 274 (42.0) | 304 (37.8) | 335 (34.4) | 365 (31.5)  | 396 (29.1)  | 426 (27.0) | 457 (25.2) |
| 10                                                | 25 (460.0) | 50 (230.0)   | 75 (153.3)        | 100 (115.0) | 125 (92.0)  | 150 (76.7)  | 175 (65.7)  | 200 (57.5)  | 225 (51.1) | 250 (46.0) | 275 (41.8) | 300 (38.3)  | 325 (35.4)  | 350 (32.9) | 375 (30.7) |
| 11                                                | 20 (550.0) | 41 (275.0)   | 62 (183.3)        | 83 (137.5)  | 104 (110.0) | 125 (91.7)  | 146 (78.6)  | 167 (68.8)  | 188 (61.1) | 209 (55.0) | 230 (50.0) | 251 (45.8)  | 272 (42.3)  | 293 (39.3) | 314 (36.7) |
| 12                                                | 17 (648.0) | 35 (324.0)   | 53 (216.0)        | 71 (162.0)  | 88 (129.6)  | 106 (108.0) | 124 (92.6)  | 142 (81.0)  | 160 (72.0) | 177 (64.8) | 195 (58.9) | 213 (54.0)  | 231 (49.8)  | 248 (46.3) | 266 (43.2) |
| 13                                                | 15 (754.0) | 30 (377.0)   | 45 (251.3)        | 61 (188.5)  | 76 (150.8)  | 91 (125.7)  | 106 (107.7) | 122 (94.2)  | 137 (83.8) | 152 (75.4) | 168 (68.5) | 183 (62.8)  | 198 (58.0)  | 213 (53.9) | 229 (50.3) |
| 14                                                | 13 (868.0) | 26 (434.0)   | 39 (289.3)        | 53 (217.0)  | 66 (173.6)  | 79 (144.7)  | 92 (124.0)  | 106 (108.5) | 119 (96.4) | 132 (86.8) | 145 (78.9) | 159 (72.3)  | 172 (66.8)  | 185 (62.0) | 199 (57.9) |
| Fit for all according Fit for 0 on 2 FED you LACD |            |              |                   |             |             |             |             |             |            |            |            |             |             |            |            |
|                                                   |            | - F          | 11 10             | r all s     | scena       | irios i     | гн ю        | or z c      | лсл        |            | per        | lajf        |             |            |            |
|                                                   |            |              |                   |             |             |             |             |             |            |            | 1 C C      |             |             |            |            |

#### Fit for 2 FEB per LASP Don't fit

Etienne FORTIN (CPPM)

ML for ATLAS LAr Calorimeter

November 19, 2021 21 / 32

#### FPGA Implementations: Ressources usage

For design with single channel input data:

For design with multiplexing input data:

|                        | 3-Conv<br>CNN | 4-Conv<br>CNN | Vanilla<br>RNN<br>(sliding) | LSTM<br>(single) | LSTM<br>(sliding) |  |
|------------------------|---------------|---------------|-----------------------------|------------------|-------------------|--|
| Frequency              |               |               |                             |                  |                   |  |
| F <sub>max</sub> [MHz] | 493           | 480           | 641                         | 560              | 517               |  |
| Latency                |               |               |                             |                  |                   |  |
| $clk_core$ cycles      | 62            | 58            | 206                         | 220              | 363               |  |
|                        | Resour        | ce Usage      | (per chann                  | el)              |                   |  |
| DSP                    | 46            | 42            | 34                          | 176              | 738               |  |
|                        | 0.8%          | 0.7%          | 0.6%                        | 3.1%             | 12.8%             |  |
| ALM                    | 5684          | 5702          | 13115                       | 18079            | 69892             |  |
|                        | 0.6%          | 0.6%          | 1.4%                        | 1.9%             | 7.5%              |  |

• 384 or 512 channels depending on the config choosen

|                            | 3-Conv<br>CNN | 4-Conv<br>CNN | Vanilla<br>RNN |  |
|----------------------------|---------------|---------------|----------------|--|
| Multiplicity               | 6             | 6             | 15             |  |
| Frequency                  |               |               |                |  |
| F <sub>max</sub> [MHz]     | 344           | 334           | 640            |  |
| Latency                    |               |               |                |  |
| clk <sub>core</sub> cycles | 81            | 62            | 120            |  |
| Max. Channels              | 390           | 352           | 576            |  |
| Re                         | source Us     | age           |                |  |
| DSP                        | 46            | 42            | 152            |  |
|                            | 0.8%          | 0.7%          | 2.6%           |  |
| ALMs                       | 14235         | 15627         | 5782           |  |
|                            | 1.5%          | 1.7%          | 0.6%           |  |

# Challenging but multiplexing LAr channels could allow CNN or Vanilla-RNN usage

Etienne FORTIN (CPPM)

ML for ATLAS LAr Calorimeter

November 19, 2021 22 / 32

#### Conclusion

- HL-HC will require improving ATLAS LAr energy measurements
  - 2 new methods using neural networks: CNN based and RNN based
- For both CNN/RNN several algorithms are developed
  - Focused on recovering energy resolution in high pileup environments by using information from past events
  - All methods outperform legacy algorithms in HL-LHC conditions
- FPGA implementation for fast processing:
  - CNN : dedicated VHDL
  - RNN : flexible HLS
  - Good reproduction of Keras results with firmware simulation
  - Optimizations ongoing to reduce resource usage and latency to fit ATLAS requirements
- First results provide a prototype firmware with an NN capable of improving the LAr energy reconstruction and fits into the FPGAs that will be used for the phase 2 data processing
- Aad, G., Berthold, AS., Calvet, T. et al. Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS LAr Calorimeters. Comput Softw Big Sci 5, 19 (2021). https://doi.org/10.1007/s41781-021-00066-y

Etienne FORTIN (CPPM)

ML for ATLAS LAr Calorimeter

#### Optimisation exemple: vanCell



- Multiply U: Vector(H) and matrix(Weights) multiplication : n<sup>2</sup> Multiplication
- Multiply W: Vector(Weights) multiplied by scalar(Input) : *n* Multiplication
- Multiply U is the biggest function of the Vanilla: optimisation focused on it

Etienne FORTIN (CPPM)

ML for ATLAS LAr Calorimeter











Etienne FORTIN (CPPM)

ML for ATLAS LAr Calorimeter

November 19, 2021 28 / 32





#### Optimisation conclusion



| ✓ main.cpp:175 > main.cpp:125 ><br>main.cpp:112 | 25 | 49 | 0 | 0 | 1.33333 |
|-------------------------------------------------|----|----|---|---|---------|
| 18bit Integer Dot Product of Size 2 (x4)        | 25 | 49 | 0 | 0 | 1.33333 |
| main.cpp:175 > main.cpp:125 ><br>main.cpp:112   | 51 | 99 | 0 | 0 | 2.66667 |
| 18bit Integer Dot Product of Size 2 (x8)        | 51 | 99 | 0 | 0 | 2.66667 |
| ♥ main.cpp:175 > main.cpp:133                   | 57 | 0  | 0 | 0 | 0       |
| 19-bit Integer Add (x3)                         | 57 | 0  | 0 | 0 | 0       |

ALUT

FFs

- DSP expected
- ALUTS expected for addition
- ALUTs: 76 In the multiplication = 8 \* 9.5 = 8 \* 19/2 : Register in ALUT before DSP ?

RAM MLAB DSP

- Optimisation: -70% of ALUTs for same performance
- HLS is cpp but it's needed to understand how the fpga work
- Functions have to be optimised as small block separate by register (directive in hls)
- Depend on the FPGA
- Intel HLS compiler
- Integration in hls4ml