
Overview of hls4ml project

Vladimir Lončar
For the FastML team

fastmachinelearning.org

https://fastmachinelearning.org

The Large Hadron Collider
27 km circumference accelerator at CERN
on the border of France and Switzerland
near Geneva

Accelerates protons close to the speed of
light, and collides them at 14 TeV centre of
mass energy

Searching for new fundamental physics of
the universe!

Collisions happen at 4 points where there
are detectors

- We work on one of these: the CMS
experiment 2

Challenges in LHC
At the LHC proton beams collide at a frequency of 40 MHz

Extreme data rates of O(100 TB/s)

“Triggering” - Filter events to reduce data rates to manageable levels

3

The LHC big data problem

Deploy ML algorithms very early
Challenge: strict latency constraints!

1 ns 1 µs 100 ms 1 s

4

L1 trigger hardware
We need fast processing of raw data O(µs)

- Not possible to use common hardware, such
as Intel CPUs, nor common operating
systems

Must be flexible and modular to support
reconfiguration and upgrade/maintenance of
modules

➔ Field-programmable gate arrays (FPGAs)

5

Field-Programmable Gate Array
Reprogrammable integrated circuits

Configurable logic blocks and embedded components

- Flip-Flops (registers)
- LUTs (logic)
- DSPs (arithmetic)
- Block RAMs (memory)

Massively parallel

Low power

6

Why are FPGAs Fast?
Fine-grained / resource parallelism

Work on different parts of the problem
simultaneously

➔ Allows us to achieve low latency
Most problems have at least some sequential
aspect, limiting how low latency we can go

But we can still take advantage of it with…

Pipeline parallelism

Use the register pipeline to work on different
data simultaneously

➔ Allows us to achieve high throughput
7

Like a production line for data…

How are FPGAs programmed?
Hardware Description Languages

Languages that describe electronic circuits

VHDL, Verilog

High Level Synthesis
Compile from C/C++ to VHDL/Verilog

Preprocessor directives and constraints used to
optimize the design

Drastic decrease in firmware development time!
Many different HLS implementations exist

Today we’ll use Xilinx Vivado HLS 8

Model

Supported DL frameworks:

Quantized
model

Quantization and pruning
techniques:

- QKeras + AutoQ (Keras)
- Brevitas (PyTorch)

hls4ml

Model conversion,
optimization, profiling &
tuning

C++/HLS
project Hardware

Xilinx FPGAs, Intel/Altera
FPGAs, Intel x86 CPUs

hls4ml pipeline

9

https://github.com/google/qkeras
https://github.com/Xilinx/brevitas

Modular design inspired by traditional compilers

- Fully extensible by introducing new frontends/optimizers/backends

Hardware-agnostic internal representation (IR) model

- Abstraction of NN layers, tensors, variables, types, precision
- Evolving

10

Architecture of hls4ml

TF frontend

Keras frontend

PyTorch frontend

ONNX frontend

TensorFlow model ➞

Keras model ➞

PyTorch model ➞

ONNX model ➞

hls4ml optimizer(s)

Quartus backend

Vivado backend

Catapult backend

oneAPI backend

➞ Xilinx FPGAs

➞ Intel FPGAs

➞ ASICs

➞ Intel x86, Xe...

On-chip weights
- Much faster access times ➞ lower latency

- Weights can be stored in registers or block RAM

User controllable trade-off between resource usage and latency/throughput
- Tuned via “reuse factor”

QKeras integration - arxiv:2006.10159

- Binary/Ternary layers (computation without using DSPs) - arxiv:2003.06308
Supported architectures:

- DNNs
- CNNs
- RNNs
- Graph NNs - GarNet architecture - arxiv:2008.03601 11

Features of Vivado backend

WIP

NEW

https://arxiv.org/abs/2006.10159
https://arxiv.org/abs/2003.06308
https://arxiv.org/abs/2008.03601

Neural network inference

12

precomputed and
stored in BRAMs

DSPs logic cells

L1
Ln

LN

How to use hls4ml
Installation:

pip install hls4ml

Usage via Python API:
import hls4ml

my_model = … # build the model in Keras

my_config = hls4ml.utils.config_from_keras_model(my_model)

hls_model = hls4ml.converters.convert_from_keras_model(my_model,

 fpga_part=’xcvu9p-flgb2104-2-e’, output_dir=’my_hls_prj’, hls_config=my_config)

report = hls_model.build()

Usage via CLI:
hls4ml config --model my_model.onnx --fpga xcvu9p-flgb2104-2-e \

 --dir my_hls_prj --output my_config.yml

hls4ml convert --config my_config.yml

hls4ml build --project my_hls_prj --all

Much, much more is available in the docs 13

https://fastmachinelearning.org/hls4ml/

Live demo
Interactive notebooks (GitHub login required): https://cern.ch/ssummers/hls4ml-tutorial

GitHub link for the tutorial: https://github.com/fastmachinelearning/hls4ml-tutorial

Today:

- Part 1: Get started with hls4ml: train a basic model and run the conversion, simulation
& C-synthesis steps

- Part 2: Learn how to tune inference performance with quantization & ReuseFactor

On your own:

- Part 3: Perform model compression and observe its effect on the FPGA
resources/latency

- Part 4: Train using QKeras “quantization aware training” and study impact on FPGA
metrics 14

https://cern.ch/ssummers/hls4ml-tutorial
https://github.com/fastmachinelearning/hls4ml-tutorial

15

Part 1: Model Conversion

Example model - jet tagging

16

Study a multi-classification task to be implemented on FPGA: discrimination between
highly energetic (boosted) q, g, W, Z, t initiated jets

Jet = collimated ‘spray’ of particles

 top other quarkZ W gluon

t→bW→bqq
3-prong jet

Reconstructed as one massive jet with substructure

q/g backgroundW→qqZ→qq
2-prong jet 2-prong jet no substructure

and/or mass ~ 0

Example model - jet tagging
Input variables: several observables known to have high discrimination power from
offline data analyses and published studies

- D. Guest at al. PhysRevD.94.112002, G. Kasieczka et al. JHEP05(2017)006, J.
M. Butterworth et al. PhysRevLett.100.242001, etc..

We’ll train the five class multi-classifier on a sample of ~ 1M events with two
boosted WW/ZZ/tt/qq/gg anti-kT jets

- Dataset DOI: 10.5281/zenodo.3602254
- OpenML: https://www.openml.org/d/42468

Fully connected neural network with 16 inputs:
- Relu activation function for intermediate layers
- Softmax activation function for output layer

17

betterAUC = area under ROC curve
(100% is perfect, 20% is random)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.94.112002
https://link.springer.com/article/10.1007/JHEP05(2017)006
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.242001
https://www.openml.org/d/42468

18

Part 2: Controlling the conversion process

In the FPGA we use fixed point representation

- Operations are integer ops, but we can represent fractional values

But we have to make sure we’ve used the correct data types!

Full performance at 6
integer bits

Scan integer bits
Fractional bits fixed to 8

Scan fractional bits
Integer bits fixed to 6

Full performance at 8
fractional bits

FP
G

A
A

U
C

 /
E

xp
ec

te
d

A
U

C

FP
G

A
A

U
C

 /
E

xp
ec

te
d

A
U

C

19

Controlling model conversion: quantization

20

Controlling model conversion: parallelization
Trade-off between latency and FPGA resource usage determined by the parallelization of the
calculations in each layer

Configure the “reuse factor” = number of times a multiplier is used to do a computation

Reuse factor: how much to parallelize operations in a hidden layer

Fully parallel

Fully serial
Fewer resources,
Lower throughput,
Higher latency

More resources,
Higher throughput,
Lower latency

21

Parallelization: DSP usage

Fully parallel
Each mult. used 1x

Each mult. used 2x

Each mult. used 3x

Longer latency

More resources

…
…

Fully parallel
Each mult. used 1x

Each mult. used 3x

Each mult. used 6x

…

~ 175 ns

~ 75 ns

…La
te

nc
y

(c
lo

ck

cy
cl

es
)

Longer latency

More resources

Latency of layer m

22

Parallelization: Timing

23

Going further: Efficient NN design

24

Efficient NN design: compression

DSPs (used for multiplication) are often the
limiting resource

- Maximum use when fully parallelized

- DSPs have a max size for input (e.g. 27x18
bits), so number of DSPs per multiplication
changes with precision

Fully parallelized
(max DSP use)

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available

Advanced example: digit classification with CNNs
Street-view house numbers dataset (SVHN)

- 32x32x3 images

- A tougher MNIST

Model architecture:

25

CNN model performance
Baseline models

- Full 32-bit precision (BF)
- Full 32-bit precision, pruned (BP)

- 75% sparsity
- Polynomial decay

QKeras models
- Quantized (Q)

- Binary (1-bit)
- Ternary (2-bit)
- Quantized to 3-16 bits

- Pruned (QP)
- 75% sparsity

26

CNN model performance on an FPGA
Targeting a Xilinx Virtex UltraScale+ VU9P series FPGA

Vivado HLS 2020.1

200MHz clock

27More details in our paper!

https://arxiv.org/abs/2101.05108

Conclusions
hls4ml - software package for translation of trained neural networks into synthesizable
FPGA firmware

- Tunable resource usage latency/throughput
- Fast inference times, O(1µs) latency

Currently being extended to multiple hardware architectures

- FPGAs, CPUs, GPUs etc

More information:

- Website: https://hls-fpga-machine-learning.github.io/hls4ml/
- Code: https://github.com/hls-fpga-machine-learning/hls4ml
- Tutorial: http://cern.ch/ssummers/hls4ml-tutorial

28

https://hls-fpga-machine-learning.github.io/hls4ml/
https://github.com/hls-fpga-machine-learning/hls4ml
http://cern.ch/ssummers/hls4ml-tutorial

