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Nuclear fragmentation models are important for:

• Nuclear Physics experiments 

• Hadrontherapy 

• Radiobiology
1868 U Amaldi and G Kraft

Figure 2. The structure of a proton and a carbon track in nanometre resolution are compared with
a schematic representation of a DNA molecule. The higher density of the secondary electrons,
produced by carbon ions, creates a large amount of clustered DNA damage.

highly protected by an extremely elaborate repair system so that DNA violations, like single
or double strand breaks, are rapidly restored. But when DNA is exposed to very high local
doses—where local refers to the scale of a few nanometres as shown in figure 2—the DNA
lesions become concentrated or clustered and the repair system fails to correct the damage. In
this case, the dose is more effective compared with sparsely ionizing radiation and the RBE is
larger than 1.

It has been shown, for carbon beams, that the location of elevated RBE coincides with
the Bragg maximum. In particular, for many cells and many biological reactions, the RBE
becomes definitely larger than 1 (i.e. these ions are much more effective than photons or
protons) when the LET becomes greater than about 20 keV µm−1, i.e. in the last 40 mm of
a carbon track in water or in biological tissue. While in the initial part of an approximately
20 cm range in matter (what is called by radiotherapists ‘the entrance channel’), the LET is
smaller than 15 keV µm−1 and the ionization density produces mostly repairable damage. The
reason why a LET of 20 keV µm−1 is so discriminating can be very qualitatively understood as
in a few nanometre thickness of a fibre, a few nanometres thick, made of a DNA helix and the
water molecules that surround it, 20 keV µm−1 corresponds to an average energy deposition
of 100–200 eV that causes, on average, the production of a dense cluster of 4–5 ionizations.

The LET values of light ions are summarized in table 2 for the range corresponding to
200 MeV protons (262 mm of water). One can see that the LET of carbon ions is larger than
20 keV µm−1 in the last 40 mm of their range in water, while for helium this only happens
in the last millimetre. For protons, the range of elevated effectiveness is restricted to a few
micrometres at the end of the range—too small to have a significant clinical impact. For ions
heavier than carbon the range of elevated RBE starts too early and extends to the normal tissues
located before the tumour. After the work done at Berkeley with neon and helium ions, in the
beginning of the 1990s, carbon ions were chosen as optimal for the therapy of deep-seated
tumours as the increased biological effectiveness, owing to the variation of the LET along the
track, could be restricted mainly to the target volume [21].

The RBE depends upon the position along the single-track Bragg peak and thus also
along a SOBP, as shown by the in vitro measurements reproduced in figure 3. To obtain a
flat ‘biological’ dose along the peak, it is necessary to have a non-uniform distribution of the
‘physical dose’, as shown in the left panel of figure 3.

The RBE effects are the combination of a physical effect, the ionization density, and of a
biological phenomenon, the DNA repair capacity of the cell. Because of the high effectiveness

image from: U. Amaldi and G. Kraft,  
Rep. Prog. Phys., vol. 68, no. 8, pp. 1861–1882, Jul. 2005.
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Carbon could breakup

• C ions could fragment in 
lighter particles 

• The fragments contribute 
significantly to the total 
dose

T. Böhlen 29Mar. 2012

Nuclear fragmentation

Geometrical cross section 
with transparency term b

Most important: charged projectile fluences (Z=1-6)

Have to be taken into account by TPS!

• Fraction of the carbon 
ions fragmenting before 
the Bragg peak: some 10% 

• Fraction of beam energy 
deposited by other ions: 
some 10% 
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About GeNIALE

• Geant4 Nuclear Interaction At Low Energy 

• Aimed at improving Geant4 in simulating 
nuclear interaction below 100 MeV/u 

• Granted by the INFN National Scientific 
Committee 5 (CSN5) for 2 years 

• and by Sapienza for 1 year 

• Nowadays included in the MC-INFN project  
(which contains all the INFN efforts to develop 
MC codes, such as Geant4)
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BLOB and Geant4

• We interfaced BLOB with 
Geant4 and its  
de-excitation model 

• obtaining promising results 0 20 40 60 80 100
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BLOB and Geant4

• The advantage of 
using BLOB instead of 
G4 models is clearer 
with heavier ejectiles 
(like 6Li)
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also the models already available in Geant4, to be taken as a reference.

2.3. Corrections

The clustering procedure discussed above provides reasonable re-
sults, for the description of the ground state and for excited primary
fragment properties, in the case of medium-heavy nuclei. However, for
light systems, such as the ones we are interested in, owing to numerical
fluctuations of the phase space density, this procedure leads to an
overestimation of the evaluated fragment excitation energies. The er-
rors are larger in percentage when the fragment excitation energy is
smaller, causing a spurious non-zero value even in the ground state.
Hence, this problem affects to a large extent the results concerning the
less central impact parameters. Indeed, the top plot of Fig. 9 does not
show the expected fall-off with increasing impact parameter (b), as
discussed above. To mitigate this effect, we applied a linear correction
to the excitation energy for b b0, being =b 5.5 fm0 , roughly twice the
12C radius. Such a correction is linear with b and its maximum is
2.77MeV/u. Such value corresponds to the average spurious ground
state excitation energy associated with the fragments emerging from
our calculations.

In addition, as already mentioned, in SMF and BLOB two-body in-
teractions are explicitly treated as elastic collisions, of a stochastic
nature, between test particles. Though the majority of the small frag-
ments is produced during the de-excitation phase, some of them may
emerge from the reaction dynamics, owing to correlations (two-body
and even more than two-body correlations) which go beyond the sto-
chastic two-body collision effects implemented in our procedure. These
correlations may change the momentum distribution of the reaction
products. To take into account these effects we developed a simple
coalescence model for the nucleons sampled from the SMF and BLOB
final state. In this simple model, if a proton and a neutron are closer
than 6 fm and their momenta differ by less than 260MeV/u, which
roughly corresponds to the Fermi energy, they form a deuteron. This
process is applied recursively to allow the formation of heavier ejec-
tiles. The position of the coalesced fragment is the average of the
fragments from which it was formed; its momentum, A and Z are sum of
the coalescing fragments.

Fig. 5. Same as Fig. 3 but for deuterium.

Fig. 6. Same as Fig. 3 but for tritium.

Fig. 7. Same as Fig. 3 but for 6Li.

Fig. 8. Same as Fig. 3 but for 7Be.
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[C. Mancini-Terracciano et al. 
Preliminary results coupling 
“Stochastic Mean Field” and 

“Boltzmann-Langevin One Body” 
models with Geant4. Phys. Med. 

67 (2019), pp. 116–122. 
https://doi.org/10.1016/

j.ejmp.2019.10.026 ]

https://doi.org/10.1016/j.ejmp.2019.10.026
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BLOB Code optimisations

• We optimised BLOB without changing the code structure (52% speed-up overall) 

• Not enough for medical application 

• Possibilities:  
• porting BLOB to GPU 
• emulating it with Deep Learning
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Variational Auto Encoders

Encoder
Latent space

Decoder
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• Train an identity function



Variational Auto Encoders

Encoder Decoder
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• Use the decoder to produce artificial images

Latent space



Conditioning to b

• Taking inspiration from: 
 
 

• VAE for generating new chemical 
compounds with properties that are 
of interest for drug discovery  

• To organise latent space w.r.t 
chemical properties they jointly 
trained the VAE with a predictor 

• It predicts these properties from 
latent space representations

[Automatic chemical design using a data-driven 
continuous representation of molecules, 

Gómez-Bombarelli at al. arXiv:1610.02415]
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Training dataset

• The BLOB final state is a list with the position in the phase space 
of fragments and gas particles 

• Fragments:  and  (real), ,  and Excitation energy 

• Gas particles: ,  and . Each representing a 1/500 
probability of having a nucleon in that position of phase space 

• 2’000 events 

• Generated with uniform impact parameter (b) 

• 1’500 of them for training and 500 for testing

A Z ⃗P ⃗Q

Z ⃗P ⃗Q
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Reducing dimensionality

• To reduce the dimensionality and use the 
Keras 3D kernels 

• We consider only: 

• The modulus of the momentum 

• its angle with the collision axis 

• The distance of each test particle with 
the fragment center 

• We divided the test particles in three 
samples (one for each possible large 
fragment): 

• To use the color channels
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Reducing dimensionality

• Fragments are represented by 
500*A particles 

• P is sampled with gaussian 
distribution: 

• mean = Pfrag  

• sigma = Excitation energy 

• All with the same q 

• r = 0
13
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Testing 
reconstruction

• Fragments are 
identified selecting  
r<1 fm 

• Momentum = average 

• Excitation energy = 
variance 

• q = average

14

(expected)



Latent space
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• Events with similar 
impact parameters are 
close in latent space 

• Especially the events 
with very large impact 
parameters



Preliminary results are encouraging

• The generated distributions (red) looks 
similar to the input  (blue) 

• The generated event has been 
generated from the same position in 
latent space of the input 

• Input from test dataset (i.e. the VAE has 
not been trained with it)
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Figure 8: Same as Figure 4 but on top of the input distribution projections,
in blue, the red histograms show the projections of the distribution generated
from the decoder part of the VAE. Such an event has been generated starting
from a point in the latent space close to the one where the input is encoded.
Unlike Figure 4, here both the PDFs are probabilities, as they are normalised
imposing that the integrals is 1. The bottom part of each panel is showing the
ratio between the generated distribution and the input one. Such ratio deviates
significantly from 1 only for the bins with quite low statistics (or close to the
peak in the middle panel).
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Dynamic Graph Convolutional Neural Networks 

• We are testing also the possibility of emulating the whole 
interaction using Graph CNN 

• Encode graph-structured data 

• Use of topological relationships  
among nodes 

• Convolve the central node’s representation with its 
neighbours’ representations 

• The model learns how to construct the graph
17



Merit (loss) function

• The loss function is made of 4 
terms 

• Reconstruction loss 

• Kullback-Leibler divergence 

• Predictor loss             

• Penalty loss (to force the VAE to 
learn the heavier fragments 
production)
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Graph CNN - First results

• Up to now we only tested A and Z 
multiplicities 

• The organisation of the latent 
space and these first results are 
encouraging 

• We will further test this possibility 
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Short term plan

• Interfacing the generative part of the VAE with Geant4 (on 
going) 

• Preparate a Docker container with TF C++ API and 
Geant4 (almost done) 

• Validate the VAE with experimental data 

• Add the interaction energy as a parameter (as done for b) 

• Train the VAE with energy below and over 62 MeV/u and 
test it in generation at that energy
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Not so long therm plan

• Add A and Z of projectile and target as parameters

21

thank you for your attention!

Long therm plan

• Develop 6D convolutional layers 

• Explore VAE with both, encoder and decoder, with graph 


