

A Dual Readout Calorimeter for FCC-ee?

Gabriella Gaudio
on behalf of the IDEA Dual-Readout Calorimeter Collaboration
January, 21st 2021

Dual-readout in a nutshell

Measure the electromagnetic fraction event by event to equalize the response off-line

$$S = [f_{em} + (h/e)_s \times (1 - f_{em})] \times E$$

$$C = [f_{em} + (h/e)_c \times (1 - f_{em})] \times E$$

e/h ratios (c = (h/e)_c and s = (h/e)_s for either Cherenkov or scintillation structure) can be measured

Cherenkov light (C)	only produced by relativistic particles, dominated by electromagnetic shower component
Scintillation light (S)	measure dE/dx

- Compensation achieved without construction constraints
- Calibration of a hadron calorimeter just with electrons
- High resolution EM and HAD calorimetry

$$cotg \theta = \frac{1 - (h/e)_S}{1 - (h/e)_C} = \chi$$

 Θ and χ are independent of both energy and particle type

$$f = \frac{c - s(C/S)}{(C/S)(1-s) - (1-c)}$$

and
$$E = \frac{S - \chi C}{1 - \chi}$$

Dual-readout calorimeter: international collaboration

- Included in FCC and CepC CDRs
- Growing international collaboration in
 - Europe: Croatia (RBI), UK (Univ. of Sussex),
 Italy (INFN-BO, INFN-CT, INFN-PI, INFN-PV,
 Univ. of Insubria)
 - Asia: Korea (Kyungpook Univ., Seoul Univ., Univ.of Seoul, Yonsei Univ.)
 - USA: Iowa State Univ., Texas Tech Univ., Univ. of Meryland, Univ. of Princeton

idea-dualreadout@cern.ch

https://indico.cern.ch/category/10684/

Innovative Detector for Electron-positron Accelerators

Simulations for performance studies

0.4 1.5 1.0 *S*

75 projective elements x 36 slices Copper + scintillating and Cherenkov fibers Fiber DR calorimeter

G4 standalone simulation

Fiber+crystal options

Jet generated with PYTHIA8, tuned to LEP measurement

Propagated in GEANT4 calorimeter

Obtain C and S response + (θ, ϕ) of the tower Get jet 4-momenta

Clustering with FASTJET (Duhram kt algorithm)

$$e^+e^- \rightarrow HZ \rightarrow \chi^0 \chi^0 jj$$

 $e^+e^- \rightarrow WW \rightarrow \nu_\mu \mu jj$
 $e^+e^- \rightarrow HZ \rightarrow bb\nu\nu$

PYTHIA8 + GEANT4 + FASTJET

Machine-Learning approach

Reconstruct and identify particle is under development with promising results.

3-class label	8-class label	
0	0	τ → μvv
0	1	τ →evv
1	2	τ →πν
1	3	$\tau \rightarrow \pi \pi^0 \nu$
1	4	τ →ππ ⁰ π ⁰ ν
1	5	τ →πππν
1	6	τ →ππππ0ν
2	7	Z →qq jets

DNN models:

- VGG-like CNN with 3D and 2D convolutions: jet/tau representation 2-channel 111x111 mesh
- DGCNN: jet/tau representation: 2D point-cloud of fbres coordinates + #p.e. as features

CNN model

Outlook

Many funding requests ongoing

- S. Korea: large founding over ~5 years (APPROVED)
- AIDA innova: mainly Post-doc positions (APPROVED)
- Submitting PRIN at Italian MUR
- Submitting INFN call CSN5: ~ 900k€ over three years (next summer)

SNOWMASS Process

- https://snowmass21.org/instrumentation/calorimetry#submitted_loi
- Large number of Lol submitted

Very wide range of activities ongoing

- ◆ Simulation, ML approach for reco, performance studies, physics studies ...
- ◆ Development in both the calorimeter construction technique and readout...
 - ◆ These activities mostly affected by covid-19 spread.
 - ◆ Foreseen TB @Desy postponed from Nov. 2020 to Feb. 2021, to be understood
- ◆ Collaboration is open to new groups interested in this detector technology