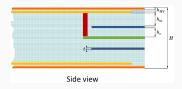
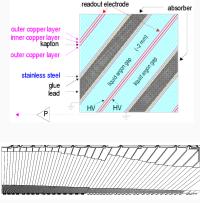
LAR CALO PROJECT FOR FCC-EE

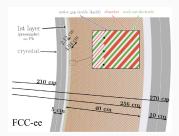
Nicolas Morange June 11, 2021

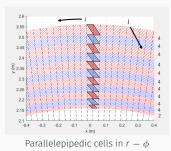



Reaching $10 \times ATLAS$ granularity

- 200000 cells \rightarrow few million cells
- Readout in ATLAS uses simple copper/kapton electrodes
- Issue: traces to route signals to front or back of electrode take space !
- For 10× more granular: go to multilayer PCB to route signals in a deep layer

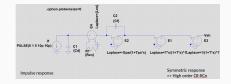
Basic design

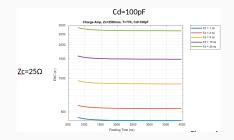

- Cannot use accordion shape for PCBs
- \Rightarrow Straight planes inclined around the barrel
 - Simulation in a specific IDEA-LAr setup



Design of ATLAS electrodes

- Enveloppe from IDEA tracker
- Aim for 20–22 X⁰
- Initial proposal: 1536 electrodes around ϕ
 - 2 mm Pb absorber, 1.2 mm PCB, 2 \times 1.24 mm LAr. Sampling fraction \sim 20%
 - Angle 50°
- Segmentation in θ : $\Delta \theta \sim 0.56^{\circ}$
- 11 segments in depth, first one without any Pb (presampler)
 - Projective cells in θ and ϕ
- All parameters still subject to optimisation


ELECTRONICS


Cold or Warm ?

- Low radiation levels allow to put frontend electronics inside cryostat
- Big advantages
 - Lower noise, higher signal from low T
 - Lower noise from shorter transmission lines
 - Simpler feedthroughs
- Some concerns
 - Reliability
 - Heat dissipation in LAr

Ongoing studies

- Basic simulations are already good enough
- Understand impact of transmission cables
- Understand impact of type of preamp (charge vs current) on noise
- Understand impact of shaping times
- Can compare for instance with BNL preamp for Dune

R&D AND SIMULATION

Necessary R&D

Some items can be blockers to be able to build such a calorimeter

- Thin cryostats: R&D ongoing at CERN
- High density feedthrough: R&D ongoing at CERN
- Cold electronics (IJCLab, Omega)
 - Challenging but very interesting project
- PCB electrodes (CERN and IJCLab)
 - Will define the maximum granularity achievable
- No thoughts put into mechanics yet
- Design of endcaps missing

Physics performance

- Simulation and integration into FCC software (CERN, Prague)
- Electroweak physics performance vs detector geometry, choice of absorber (Edinburgh)
- Tau physics studies and π^0/γ identification (Copenhagen)
- A lot of work to do on these simulation / performance aspects
 - In particular, interesting work to do on the reconstruction / clustering
 - See what we can achieve in terms of jet energy resolution, e/γ identification, in the full energy range, and in the context of a global PFlow reconstruction !

Very open to new contributions !