TARGET SIMULATIONS FOR SPL-SUPERBEAM COMPARATIVE STUDIES WITH FLUKA

Christoph Bobeth IPHC Strasbourg

RAL - 18th november 2009

Christoph Bobeth

RAL - EURO ν - WP2 meeting

A comparative study of low- and high-Z target materials

Ζ	ρ	λ_I	λ_I / ρ
	[g/cm ³]	$[g/cm^2]$	[<i>cm</i>]
Be	1.85	77.8	42.1
С	1.85	85.8	46.4
Al	2.7	107.2	39.7
AlBeMet*)	2.1		
Та	16.69	191.0	11.4
W	19.25	191.9	10.0
Hg	13.546	197.5	14.6

*) AlBeMet = 61% Be, 38% Al, 1% O (mass fraction)

SETUP – FLUKA + TARGET

SIMULATIONS WITH FLUKA

- using latest FLUKA (Oct. 2009) default parameter set
- scoring # of secondary particles when exiting target surface

TARGET AND PARAMETERS

Target geometry \Rightarrow cylinder centered around beam axis (= +z-axis)

- Z ... target material
- L[cm] ... target length
- R[cm] ... target radius
- $E_k[GeV] \dots p^+$ -beam kinetic energy
- $\sigma[cm]$... width of gaussian beam profile

REFERENCE TARGET (USED BY ANDREA LONGHIN)

Z = C, L = 78 cm, R = 1.5 cm, $E_k = 4.5 \text{ GeV}$, $\sigma = 0.0 \text{ cm}$

2NDY PARTICLE IDS AND MULTIPLICITIES

MULTIPLICITY

particle multiplicity of type
$$j = \frac{\text{\# of 2ndy particles type } j}{\text{\# of p.o.t}}$$

IDS OF 2NDY PARTICLES EXITING TARGET

- light nuclear boundstates: α , ³He, Tritium and Deuterium
- light baryons: p, n, Λ, Σ
- light mesons: π, K
- leptons, neutrinos and photons: $e, \mu, \nu_e, \nu_\mu, \gamma$

2NDY PARTICLE IDS AND MULTIPLICITIES – BE

Christoph Bobeth

RAL - EURO_V - WP2 meeting

2NDY PARTICLE IDS AND MULTIPLICITIES – C

Christoph Bobeth

RAL - EURO_V - WP2 meeting

2NDY PARTICLE IDS AND MULTIPLICITIES – AL

Christoph Bobeth

RAL - EURO_V - WP2 meeting

2NDY PARTICLE IDS AND MULTIPLICITIES – ALBEMET

Christoph Bobeth

RAL - EURO_V - WP2 meeting

2NDY PARTICLE IDS AND MULTIPLICITIES – TA

Christoph Bobeth

RAL - EURO_V - WP2 meeting

2NDY PARTICLE IDS AND MULTIPLICITIES – W

Christoph Bobeth

RAL - EURO ν - WP2 meeting

2NDY PARTICLE IDS AND MULTIPLICITIES – HG

Christoph Bobeth

RAL - EURO_V - WP2 meeting

MULTIPLICITIES

Comparing total multiplicities for $\{\pi^+, \pi^-, p^+, n, \gamma\}$ varying

- $Z \in \{Be, C, Al, AlBeMet, Ta, W, Hg\}$
- $L \in \{7, 15, 30, 78\}$ cm
- *R* ∈ {0.75, 1.5} *cm*
- $E_k \in \{2.2, 4.5, 8.0\}$ GeV

FIXED BEAM POWER 4 *MW* YIELDS

$E_k [GeV]$	p.o.t/s $\times 10^{16}$	p.o.t/pulse $\times 10^{14}$ at 50 Hz	factor
2.2	1.14	2.27	2.04
4.5	0.56	1.11	1.00
8.0	0.31	0.63	0.55

LOW- $Z - \pi^+$

Christoph Bobeth

RAL - EURO_V - WP2 meeting

LOW- $Z - \pi^-$

Christoph Bobeth

RAL - EURO_V - WP2 meeting

LOW- $Z - p^+$

Christoph Bobeth

RAL - EURO_V - WP2 meeting

LOW-*Z* – *n*

Christoph Bobeth

RAL - EURO_V - WP2 meeting

LOW- $Z - \gamma$

Christoph Bobeth

RAL - EURO_V - WP2 meeting

HIGH- $Z - \pi^+$

Christoph Bobeth

RAL - EURO_V - WP2 meeting

HIGH- $Z - \pi^-$

Christoph Bobeth

RAL - EURO_V - WP2 meeting

HIGH- $Z - p^+$

Christoph Bobeth

RAL - EURO_V - WP2 meeting

HIGH-*Z* – *n*

Christoph Bobeth

RAL - EURO_V - WP2 meeting

HIGH- $Z - \gamma$

Christoph Bobeth

RAL - EURO_V - WP2 meeting

Differential multiplicities w.r.t

- momentum of 2ndy particle
- angle of momentum of 2ndy particle w.r.t. beam-axis
- z-position when exiting the target

for reference target and $\{\pi^+, \pi^-, p^+, n, \gamma\}$

DIFFERENTIAL MULTIPLICITIES – π^+

DIFFERENTIAL MULTIPLICITIES – π^-

DIFFERENTIAL MULTIPLICITIES – p^+

DIFFERENTIAL MULTIPLICITIES – *n*

DIFFERENTIAL MULTIPLICITIES – γ

Remember, that at 4 MW and 50 Hz for $E = 4.5 \text{ GeV} \dots$

... 0.56×10^{16} p.o.t/s and 1.11×10^{14} p.o.t/pulse

ENERGY DENSITY – C

for beam width $\sigma \in \{0.0, 0.2, 0.4, 0.8\}$ *cm* similar for {Be, AI, AIBeMet}

Christoph Bobeth

RAL - EURO ν - WP2 meeting

ENERGY DENSITY – TA

for beam width $\sigma \in \{0.0, 0.2, 0.4, 0.8\}$ *cm* One order higher then for C!

Christoph Bobeth

RAL - EURO ν - WP2 meeting

Deposited energy/pulse and power for beam width $\sigma =$ 0.0 cm

Ζ	E/pulse	Р
	[kJ/pulse]	[<i>kW</i>]
Be	3.39	169.5
С	4.03	201.5
AI	5.73	286.6
AlBeMet	4.09	204.8
Та	23.6	1180
W	25.4	1272
Hg	20.7	1036

For beam width σ = 0.4 *cm* (0.8 *cm*) deposited power drops to 97 % (72-75 %) compared to σ = 0.0 *cm*

	low-Z	high-Z
$L\sim 2\lambda_I$	(80 - 90) cm	(20 - 30) cm
pi ⁺	0.65 - 0.71	0.55 - 0.58
pi [_]	0.44 - 0.49	0.47 - 0.50
pi ⁻ /pi ⁺	0.66 - 0.72	0.85
<i>pi</i> ⁺ ∈ [0.5, 0.8] <i>GeV</i>	0.13 - 0.15	0.13 - 0.14
<i>pi</i> [−] ∈ [0.5, 0.8] <i>GeV</i>	0.09 - 0.11	0.11 - 0.12
pi ⁻ /pi ⁺	0.66 - 0.72	0.86 - 0.88
n	1.9 - 4.0	42 - 48
γ	1.9 - 5.7	50 - 54
deposited power*)	(170 - 290) kW	(1000 - 1300) kW

*) for reference target at 4 MW beam power

Christoph Bobeth

RAL - EURO ν - WP2 meeting