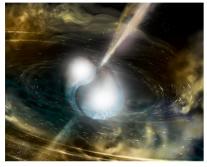


Source classification of compact-binary mergers for candidates from the MBTA pipeline

Dimitri Estevez


Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France

Why do we need a source classification?

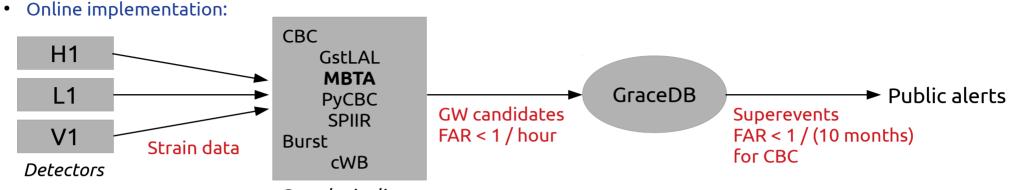
Compact-binary coalescences divided in 3 categories:

Binary Neutron Stars (BNS)

Neutron Star Black Hole (NSBH)

Binary Black Hole (BBH)

In low-latency:


• Help astronomers to decide whether to undertake a follow-up or not of the gravitational-wave candidates broadcast via public alerts

In archival data:

- → Sub-threshold triggers analysis with other messengers (electromagnetic, neutrinos...)
- Compute binary merger rates of source specific compact objects
- Inform the population synthesis of compact-binary systems

D. Estevez

MBTA a CBC search pipeline

Search pipelines

- Multi-Band Template Analysis pipeline developed in Virgo used in online/offline searches (*Class. Quantum Grav. 38 095004*)
- Offline implementation:
 - → Add p_{astro} calculation with source classification
 - → Results published in GWTC-2.1 (*R. Abbott et al. 2021*)

Name	Inst.	MBTA		\mathbf{GstI}	\mathbf{AL}	\mathbf{PyC}	BC	PyCBC-BBH		
		$FAR (yr^{-1})$	$\operatorname{SNR} p_{\operatorname{astr}}$	$_{\rm o}$ FAR (yr ⁻¹)	$\operatorname{SNR} p_{\operatorname{astro}}$	FAR (yr^{-1})	$\operatorname{SNR} p_{\operatorname{astro}}$	FAR (yr^{-1})	$\operatorname{SNR} p_{\operatorname{astro}}$	
GW190403_051519	HL							7.7	8.0 0.61	
$GW190408_{181802}$	HLV	8.7×10^{-5}	14.4 1.00	$ <1.0\times10^{-5}$	$14.7 \ 1.00$	2.5×10^{-4}	$13.1 \ 1.00$	$<1.2\times10^{-4}$	$13.7\ 1.00$	
GW190412	HLV	$< 1.0 \times 10^{-5}$	$18.2 \ 1.00$	$ <1.0\times10^{-5}$	$19.0 \ 1.00$	$ < 1.1 \times 10^{-4}$	$17.4 \ 1.00$	< 1.2 × 10 ⁻⁴	$17.9 \ 1.00$	
$GW190413_052954$	HL					170	8.5 0.13	0.82	8.5 0.93	
CIW100419 194900	TTT \$7	0.94	10.9.000	00	10 1 0 01	0.4	0 0 0 10	0.10	0.0.00	

Probability of astrophysical origin: Pastro

 $p_{astro} = \frac{\text{foreground}}{\text{background} + \text{foreground}} = \frac{\Lambda_1 f(x)}{\Lambda_0 b(x) + \Lambda_1 f(x)}$

- **b(x) background density** estimated from MBTA process
- Λ_0 expected number of background triggers
- f(x) astrophysical foreground density estimated from astrophysical population
- Λ_1 expected number of astrophysical triggers
- Bayesian analysis using a Poisson mixture formalism to determine Λ_0 and Λ_1 : (Kapadia et al. 2020)
 - $p(\Lambda_0, \Lambda_1 | \vec{x}) \propto \pi(\Lambda_0, \Lambda_1) \mathcal{L}(\vec{x} | \Lambda_0, \Lambda_1)$

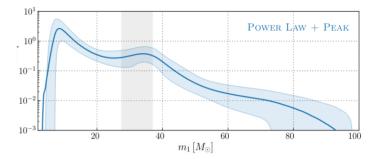
Name	MBTA			GstLAL			PyCBC			PyCBC-BBH					
	$p_{\rm BBH}$	$p_{\rm NSBH}$	$p_{\rm BNS}$	$p_{ m astro}$	$p_{\rm BBH}$	$p_{\rm NSBH}$	$p_{\rm BNS}$	$p_{ m astro}$	$p_{\rm BBH}$	$p_{\rm NSBH}$	$p_{\rm BNS}$	$p_{\rm astro}$	$p_{\rm BBH}$	$p_{\rm NSBH}$	$p_{ m astro}$
GW190425_081805	-	_	-	-	0.00	0.00	0.78	0.78	-	_	-	-	_	_	_
$GW190707_093326$	1.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	0.93	0.07	0.00	1.00	0.93	0.07	1.00
GW190720_000836	1.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	0.95	0.05	0.00	1.00	1.00	0.00	1.00
GW190725_174728	0.59	0.00	0.00	0.59	-	_	-	-	0.79	0.17	0.00	0.96	0.58	0.24	0.82

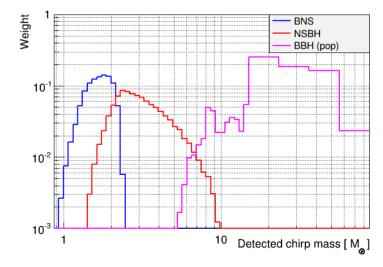
- Generalization to 3 categories of astrophysical triggers:
 - $\vec{\Lambda}_1 = \{\Lambda_{BNS}, \Lambda_{NSBH}, \Lambda_{BBH}\}$
- Perform a source classification by computing p_{BNS}, p_{NSBH} and p_{BBH}:

$$\Rightarrow p_{\alpha}(x|\vec{x}) = \int_{0}^{\infty} p(\Lambda_{0}, \vec{\Lambda}_{1}|\vec{x}) \frac{\Lambda_{\alpha} f_{\alpha}(x)}{\Lambda_{0} b(x) + \vec{\Lambda}_{1}.\vec{f}(x)} d\Lambda_{0} d\vec{\Lambda}_{1} \Rightarrow p_{astro}(x|\vec{x}) = \sum_{\alpha} p_{\alpha}(x|\vec{x})$$

D. Estevez
GdR OG - October 12, 2021

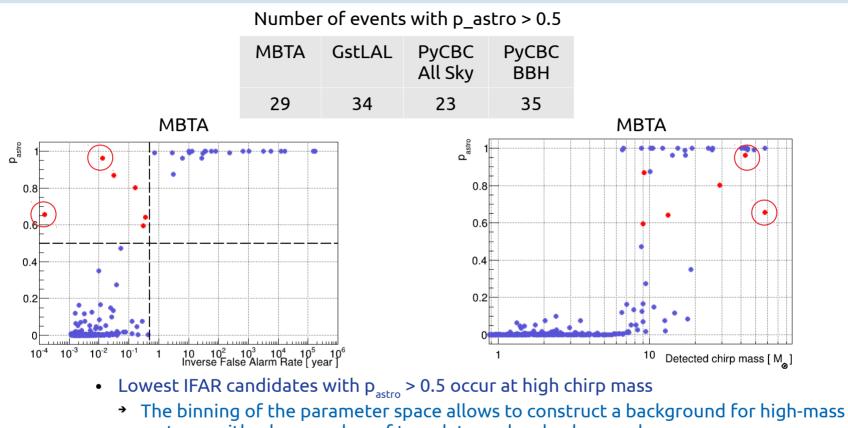
GWTC-2.1


• Population models:

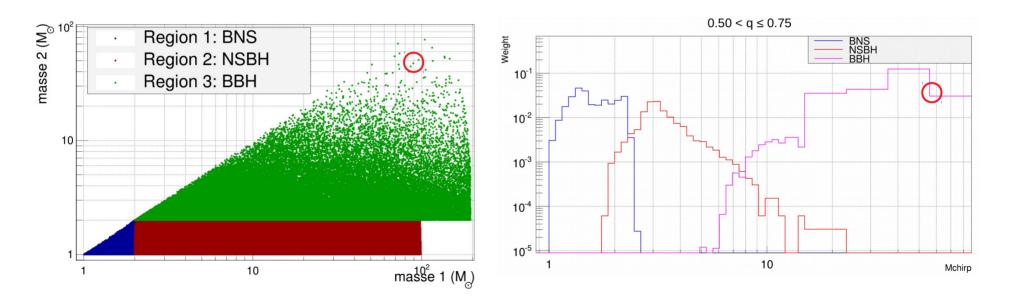

	Mass distribution	$\begin{array}{c} \text{Mass} \\ \text{range} \ (M_{\odot}) \end{array}$	${\mathop{ m Spin}}$ range	Spin orientations	Redshift evolution	Maximum redshift
BBH (pop)	Power Law + Peak	$5 < m_1 < 80$ $5 < m_2 < 80$	$ \chi_{1,2} < 0.998$	isotropic	$\kappa = 0$	1.9
NSBH	$p(m_1) \propto m_1^{-2.35}$ uniform	$\begin{array}{l} 2.5 < m_1 < 60 \\ 1 < m_2 < 2.5 \end{array}$	$\begin{aligned} \chi_1 < 0.998\\ \chi_2 < 0.4 \end{aligned}$	isotropic	$\kappa = 0$	0.25
BNS	uniform	$\begin{array}{l} 1 < m_1 < 2.5 \\ 1 < m_2 < 2.5 \end{array}$	$ \chi_{1,2} < 0.4$	isotropic	$\kappa = 0$	0.15

• Binning of the search parameter space:

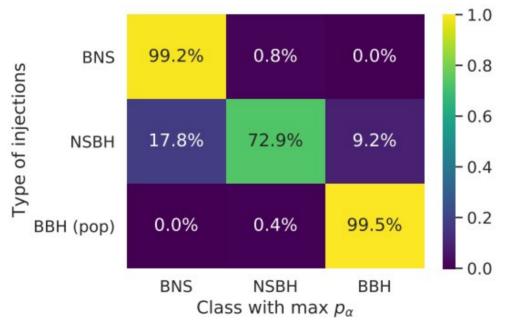
- Standard search is split into 3 "mass1 mass2" regions "BNS", "NSBH", "BBH"
- For p_{astro} calculation we use a "chirp mass mass ratio" space divided in 165 bins
- Look at how injections of simulated GW signals in O3a data are recovered in MBTA template bank
 - Build the foreground for the different astrophysical categories


R. Abbott et al 2021 ApJL 913 L7

D. Estevez

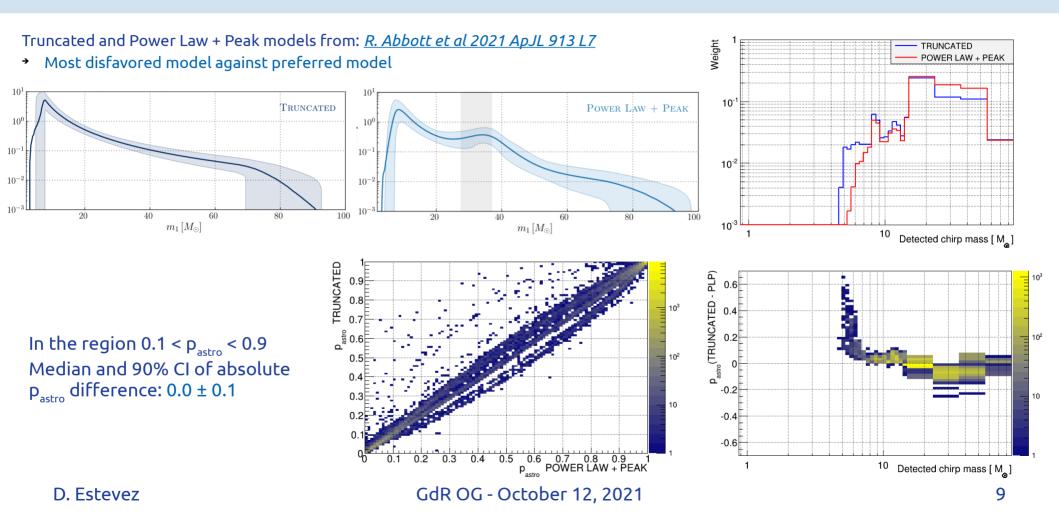

Results in GWTC-2.1 (O3a period)

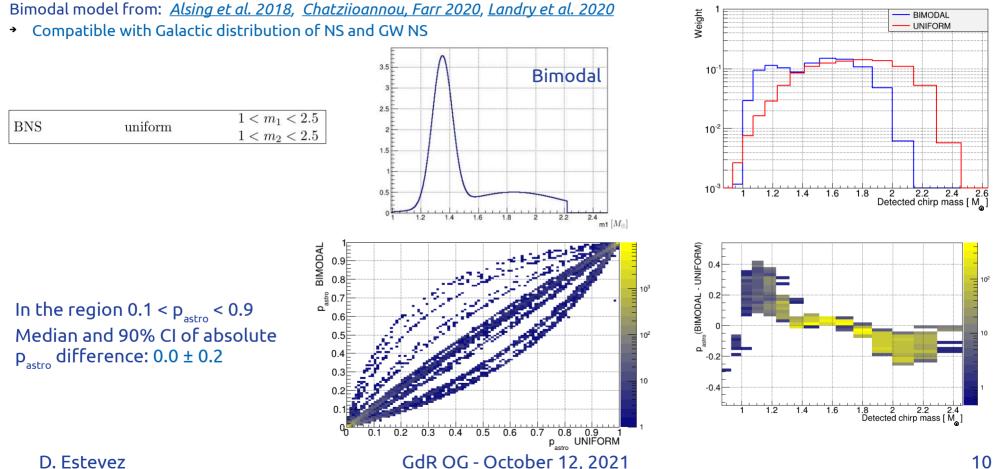
systems with a low number of templates → low background
The expected BBH population is high in that region → high foreground


Example of a high-mass candidate event: GW190916

	pAstro	FAR [yr ⁻¹]	SNR	Chirp mass (m1.m2) ^{3/5} /(m1+m2) ^{1/5}	Mass ratio (q=m2/m1)	
GW190916 HL	0.66	~ 6900	8.2	57.6	0.55	

Performance of the classification

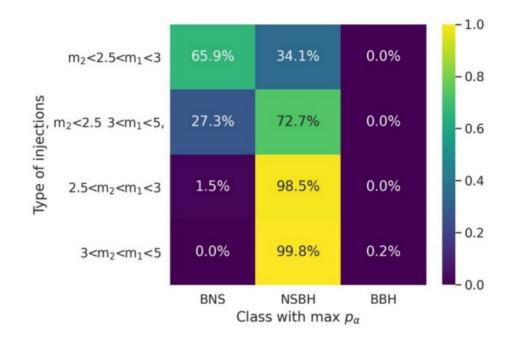

- Simulated GW signals for the assumed compact-binary populations:
 - About 40 000 injections for each astrophysical category


- Poor measurement of the mass ratio:
 - Overlap between some of the NSBH bins and the other categories

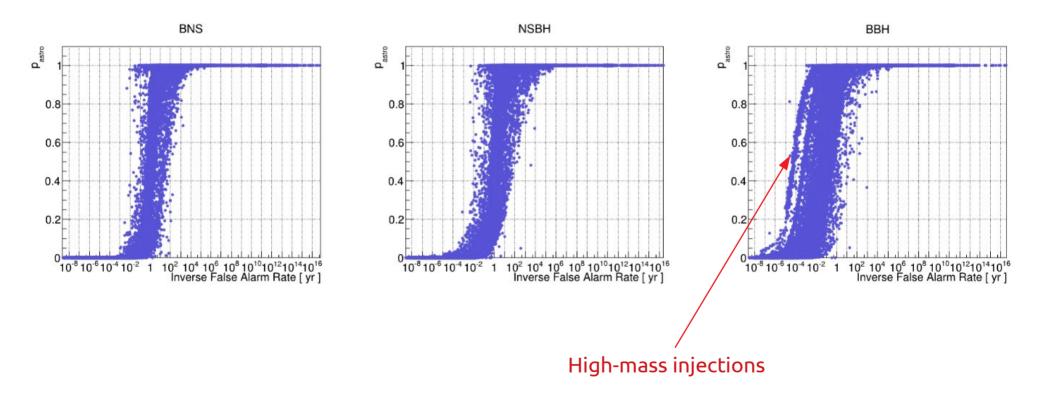
D. Estevez

P_{astro} sensitivity to BBH population models

P_{astro} sensitivity to BNS population models


Conclusion and perspectives

- Start to have a reasonable knowledge of BBH populations
 - → Allow to go from FAR to p_{astro} to select candidate events
- BNS and NSBH populations are still uncertain:
 - Current p_{astro} of such candidate events will change with more detections
- Towards O4:
 - p_{astro} method used offline will be adapted to low-latency search
 - Fine tuning and updated population models
 - Make a source classification in terms of EM bright sources?


EXTRA SLIDES

Performance of the classification in the mass gap

Simulated GW signals in the assumed mass gap between BNS and BBH from 2.5 $\rm M_{\odot}$ to 5 $\rm M_{\odot}$

P_{astro} and IFAR on injections

