UnivEarthS
 Université de Paris

Constraints to neutron star kicks

in High-Mass X-ray binaries with Gaia EDR3

F. Fortin, F. Garcia, S. Chaty, E. Chassande-Mottin, A. Simaz-Bunzel, A\&A subm.

Evolution of High-Mass X-ray binaries

Natal kicks - State of the art \& Aims

\rightarrow Analytical solution of its impact on orbital parameters in binaries (Kalogera 1996)
\rightarrow Cir X-1 velocity \& orbit explained by massive natal kick of $\sim 500 \mathrm{~km} / \mathrm{s}$ (Tauris+1999)
\rightarrow Black Hole X-ray binary with high runaway velocity (Mirabel+2002)
\rightarrow Isolated pulars: preferential direction of the kick wrt spin ? (Ng \& Romani 2013)
\rightarrow Natal kick derived on an HMXB with the Australian LBA radio interferometer (Miller-Jones+2018)
\rightarrow Radio interferometry + Gaia DR2 to derive kick on 16 BH X-ray binaries (Atri+2019)

Kicks are still misunderstood, most studies tackle a single source in the case of binaries
\rightarrow Infer the NS kick magnitude in known HMXBs of our Galaxy
\rightarrow Use of astrometric data from Gaia EDR3
\rightarrow Characterize the NS kick distributions across HMXB subtypes ($\mathrm{Be}, \mathrm{Oe}, \mathrm{sg}$)

Pre-requisites

i) build a list of HMXBs known in the Milky Way

- cross-match between old HMXB catalogue (Liu+2006) with current INTEGRAL sources (Bird+2016)
- cross-match with Simbad (Centre de Données astronomiques de Strasbourg)
- some candidate HMXBs in previous catalogues are now confirmed/discarded
- retrieve exact references for spectral type, mass, period, eccentricity, radial velocity (1D)
ii) find the Gaia counterparts of those HMXBs \& retrieve position (3D) and proper motion (2D)
\rightarrow 6D data (position + proper motion + radial velocity)
Peculiar Velocity $=$ Velocity - Galactic orbital motion

Gaia counterparts to HMXBs

Gaia view of HMXBs in the Milky Way

Deriving neutron star kicks

Analytical equation linking pre-SN to post-SN orbital parameters (Kalogera 1996), assuming an isotropic probability of the kick direction.

- Blaauw kick (spherically symmetric mass loss, Blaauw 1961)
- Asymmetric kick (random direction)

Hypotheses:

- circularized systems (initial mass transfer)
- fixed NS mass @ $1.4 \mathrm{M}_{\text {sun }}$
- companion is unaffected by the supernova

Deriving neutron star kicks

Bayesian approach:

- Priors on kick magnitude, initial $\mathrm{P}_{\text {orb }}$ and pre-SN mass
- Likelyhoods: Gaia observables, companion mass, $P_{\text {orb }} \& ~ e c c e n t r i c i t y ~$
\rightarrow Explore the posterior distributions using Markov Chain Monte Carlo (MCMC)

Inferring kick distributions on HMXB subtypes

We have a posterior probability of kick velocities for each 35 HMXBs.
\rightarrow How can we characterize the kick distributions on each HMXB subtypes ?

To get a representative distribution, we use a bootstrap method:

- for each HMXB, draw a random kick velocity according to its posterior probability
- 1 bootstrap iteration is a collection of those random draws, effectively one possible posterior for the whole HMXB subtype population in question
- iterate 1000 times
\rightarrow Fit each posteriors with a Gamma function, retrieve median parameters.

Results on kick distributions

Inferred kick magnitudes on 35 HMXB :

\rightarrow Kicks are reproduced with Gamma functions
(instead of the commonly used Maxwellian)
\rightarrow Can be confronted to population synthesis models in order to constrain the physics behind NS kicks

Prospects: Gaia DR3, HMXB birthplace, catalogue

- Upcoming release(s) of Gaia
\rightarrow Gaia DR3 improvement over EDR3: addition of astrophysical parameters \& some RVs
\rightarrow No additional source, no improvement on astrometry
\rightarrow Full release TBD, extra sources with more constrained astrometry.
-Finding the birthplace of HMXBs in the Galaxy (Fortin et al. in prep)
\rightarrow We have the peculiar velocity of HMXBs
\rightarrow If they are born within clusters, we could find them in Gaia \rightarrow get their peculiar velocity
\rightarrow Integrate orbits over \sim Myr to find candidate birthplaces for Galactic HMXBs.
- Catalogue of High-Mass X-ray Binaries in the Milky Way

Extra: Maxwellian vs. Gamma

Maxwellian is historically used to model kicks in isolated pulsars (Hobbs+2005, Ng \& Romani 2007, Noutsos+2013)

Unbound systems ?

\rightarrow observed vs. pop synth.

Stripped progenitors ?

\rightarrow lower pre-SN mass

Kick isotropy?
\rightarrow NS spin axis

Extra: $\mathrm{M}_{\mathrm{pre-SN}}$ distribution

Extra: impact of missing radial velocity

Extra: impact of neutron star mass

\rightarrow Assumed constant NS mass of 1.4 Msun, what about more massive NSs ?

No notable difference on the fitted parameters
\rightarrow NS mass variation are much smaller than $\mathrm{M}_{\mathrm{pre}-\mathrm{SN}}$ uncertainty

Extra: building the list of HMXBs

Example: PSR B1259-63

Radial velocity followup of the Oe companion star
\rightarrow Curve is presented but no value of the systemic velocity is given in the paper !
\rightarrow WebPlotDigitizer: we retrieved the data from the plot and fitted the systemic velocity
\rightarrow Do that for 130 HMXBs in the Galaxy.

Radial velocity of PSR B1259-63 (Johnston+1994)

