FIRST DETECTIONS OF NEUTRON STAR-BLACK HOLE MERGERS

((O))VIRGD

KAGRA

LIGO Scientific Collaboration

Astrid Lamberts - Observatoire de la Côte d'Azur

GDR OG-12/10/21

Visualisation: T. Dietrich, N Fischer, S. Ossokine; AEI, UP

THE « MISSING » GW SOURCE

GW150914: BBH

GW170817: BNS

2020: NSBH

THE GWTC2.0 CATALOG

GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

GW200105: A SINGLE DETECTOR EVENT

False alarm rate: 1/3 yrs: how to establish confidence? -> distinctly separate from noise

GW200115: COINCIDENT MULTI-DETECTOR OBSERVATION

- GW200115: A coincident event
- H1 or L1: Do not stand out individually (SNR~11)
- Significance (False Alarm Rate):

From 1/ (182 yr) to less than 1 / (10⁵ yr)

Astrid Lamberts

FIRST PROOF OF EXISTENCE OF NS-BH BINARIES

Astrid Lamberts

PRIMARY SPINS

 $|\vec{\chi}_1| < 0.23 \ (90\% \ \text{confidence})$

Small spin magnitude

Possibly misaligned spin

PROVING THE PRESENCE OF NS

No EM counterpart (expected)

BUT ~95% probability of NS by comparison with known NS masses

FIRST EMPIRICAL INFERENCE OF NSBH MERGER RATE

Astrid Lamberts

FORMATION CHANNELS

Isolated binary evolution

- Merger rate ~0.1-800 Gpc-3yr-1
- Large uncertainties due to treatment of supernova kicks, common envelope treatment
- Masses compatible with measurements

Credit: European Space Agency, NASA, and Felix Mirabel

NGC 4755 Credit: ESO

Young star clusters

- Merger rate ~0.1-100 Gpc-3yr-1
- Most NSBHs ejected before undergoing dynamical exchanges, merge in the field
- Encompasses contribution from **isolated binary evolution**
- Masses compatible with measurements

FORMATION CHANNELS

Credit: ESA / NASA / Hubble / Rosario et al.

AGN disks

- Merger rate ≈300 Gpc⁻³ yr⁻¹
- Depends on contribution of AGNs to overall merger rate-> large uncertainties

Globular clusters

Merger rate ~0.01 Gpc⁻³ yr⁻¹ (NS get kicked out)

Credit: ESA / NASA / Hubble

Hierarchical triples

- Merger rate ~0.001-0.01 Gpc⁻³ yr⁻¹
- Enhanced if no supernova kicks

Credit: ESO / L. Calçada

GW200115: MISALIGNED SPIN WITH MASS GAP PRIMARY?

Black hole masses

- GW200115 BH may be in the lower mass gap
 - \circ P(mass gap) \approx 30%
 - Correlated with negatively-aligned primary spin
- Very difficult to form:
 - Very high NS kick (Fragione+21, Zhu+21)
 - Combined with very efficient common envelope?
 - Very high BH kick (Gompertz+21)

Degeneracy between m1 and spin for low SNR Analysis with (astrophysical) low spin prior: m1~7 Msun, no spin (Mandel+21)

SUMMARY: FIRST NSBH OBSERVATIONS

GW200105 \sim 1.9 and 9 M $_{\odot}$ (two detectors)GW200115 \sim 1.5 and 6 M $_{\odot}$ (three detectors)

No definite proof of nature of secondary, but suggestive

Secondary masses smaller than maximum NS mass

 Masses consistent with known galactic NS and formation scenarios

NS-BH merger rate of ~100 Gpc⁻³ yr⁻¹ consistent with several formation scenarios.

