FIRST DETECTIONS OF NEUTRON STAR-BLACK HOLE MERGERS

THE « MISSING » GW SOURCE

GW150914: BBH

GW170817: BNS

THE GWTC2.0 CATALOG

GW200105: A SINGLE DETECTOR EVENT

Joint SNR- ξ^{2} noise probability density function

False alarm rate: $1 / 3$ yrs: how to establish confidence? -> distinctly separate from noise

GW200115: COINCIDENT MULTI-DETECTOR OBSERVATION

- GW200115: A coincident event
- H1 or L1: Do not stand out individually (SNR~11)
- Significance (False Alarm Rate):

From 1/ (182 yr) to less than 1 / (105 yr)

FIRST PROOF OF EXISTENCE OF NS-BH BINARIES

PRIMARY SPINS

GW200105

$\left|\vec{\chi}_{1}\right|<0.23$ (90\% confidence)
Small spin magnitude

Possibly misaligned spin

PROVING THE PRESENCE OF NS

No EM counterpart (expected)

BUT ~95\% probability of NS by comparison with known NS masses

FIRST EMPIRICAL INFERENCE OF NSBH MERGER RATE

Assuming one detection of each type:

- 12-120 Gpc-3 yr^{-1}

Accounting for less significant triggers:

- 61-242 Gpc- ${ }^{-3} \mathrm{yr}^{-1}$

All merger rates now empirically measured -> time for models!

NSBH

12-242 Gpc-3 yr^{-1}

BNS
80-810 $\mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$

BBH
$15-38 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$

FORMATION CHANNELS

Isolated binary evolution

- Merger rate ~0.1-800 $\mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$
- Large uncertainties due to treatment of supernova kicks, common envelope treatment
- Masses compatible with measurements

Credit: European Space Agency, NASA, and Felix Mirabel

Young star clusters

- Merger rate ~0.1-100 $\mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$
- Most NSBHs ejected before undergoing dynamical exchanges, merge in the field
- Encompasses contribution from isolated binary evolution
- Masses compatible with measurements

NGC 4755 Credit: ESO

FORMATION CHANNELS

Credit: ESA / NASA / Hubble / Rosario et al.

AGN disks

- Merger rate $\approx 300 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$
- Depends on contribution of AGNs to overall merger rate-> large uncertainties

Globular clusters

- Merger rate $\sim 0.01 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$ (NS get kicked out)

Credit: ESA / NASA / Hubble

Hierarchical triples

- Merger rate $\sim 0.001-0.01 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$
- Enhanced if no supernova kicks

Credit: ESO / L. Calçada

GW200115: MISALIGNED SPIN WITH MASS GAP PRIMARY?

Black hole masses

- GW200115 BH may be in the lower mass gap
- $\mathrm{P}($ mass gap) $\approx 30 \%$
- Correlated with negatively-aligned primary spin
- Very difficult to form:
- Very high NS kick (Fragione+21, Zhu+21)
- Combined with very efficient common envelope?
- Very high BH kick (Gompertz+21)

Degeneracy between m1 and spin for low SNR
Analysis with (astrophysical) low spin prior: m1~7
Msun, no spin (Mandel+21)

SUMMARY: FIRST NSBH OBSERVATIONS

GW200105 ~ 1.9 and $9 \mathrm{M}_{\odot}$ (two detectors) GW200115 ~1.5 and $6 \mathrm{M}_{\odot}$ (three detectors)

No definite proof of nature of secondary, but suggestive

- Secondary masses smaller than maximum NS mass
- Masses consistent with known galactic NS and formation scenarios

NS-BH merger rate of $\sim 100 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$ consistent
 with several formation scenarios.

