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Why cross-correlation of galaxies with GW?

+ X-correlation of galaxy surveys with GW catalogs or the stochastic background
IS an example of synergy between cosmology and MM astronomy

- |t has been used so far mostly to (i) infer cosmological parameters, (ii) constrain
BBH progenitors, and (iii) disentangle a primordial BH origin of BBH events

- This latter goal relies on the possiblility to precisely measure the linear bias, b, and
eventually its redshift evolution
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+ X-correlation of galaxy surveys with GW catalogs or the stochastic background
Is an example of synergy between cosmology and MM astronomy

- |t has been used so far mostly to (i) infer cosmological parameters, (ii) constrain
BBH progenitors, and (iii) disentangle a primordial BH origin of BBH events

- This latter goal relies on the possiblility to precisely measure the linear bias, b, and
eventually its redshift evolution

Considering the number density fluctuations in a population of discrete objects in Fourier space

0i(k,z) = bi(2)0(k, 2)

Bias, b, indicates the extent to which the field i traces LSS
b > 1: Stellar origin, BBH harboured in luminous and massive galaxies
b < 1: Primordial origin, BBH tracing dark matter (known biased tracer of LSS)
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The question

When will we be able to measure the x-correlation between binary events and LSS?

GW event catalogs Galaxy catalogs

60°




The answer

With 10yr of HLVIK at design sensitivity we can detect
x-correlation of binary populations with LSS

OO

Game changer: galaxy catalog optimisation and tomography
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Cross angular power spectrum (CAPS)

Between number density fluctuations in a population of discrete objects of two catalogs a and b

Ce® = 2 / k*’Gq.o(k)Gy o (k)dk

Non-linear matter power spectrum of LSS

Window function of the field i (catalog redshift distribution)

Bias with respect to matter distribution (reference b = 1)
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Methodology and formalism v

Cross angular power spectrum (CAPS)

Between number density fluctuations in a population of discrete objects of two catalogs a and b
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Mock GW catalogs
Populations of compact binary mergers

1. Monte Carlo code developed for the Einstein Mock data challenges T. Regimbau et al., Phys. Rev. D86 (2012)
B. P Abbott et al. Phys. Rev. X 9 (2019)

2. Match-filtered signal-to-noise ratio, SNR, for three detector configurations
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2. Match-filtered signal-to-noise ratio, SNR, for three detector configurations

BLWQV&’PO’PMLQ'&«OV\/S T T T 1T T T TTTTI T T T TTTI

Case BNS BBH | BHNS ET2CE

HLV | 5x10% [4x103][< 2 x 103
HIVIK |2.5 x 103 |2 x 10%| < 2 x 104
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Mock GW catalogs
Populations of compact binary mergers

1. Monte Carlo code developed for the Einstein Mock data challenges T. Regimbau et al., Phys. Rev. D86 (2012)
B. P Abbott et al. Phys. Rev. X 9 (2019)

2. Match-filtered signal-to-noise ratio, SNR, for three detector configurations

3. Sky localisation and luminosity distance posteriors from BAYESTAR to
(/) redshift error, and (ii) circular Gaussian beam width equivalent
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The galaxy catalogs

To reduce the error on the x-correlation, we want:
1. Large sky coverage
2. Large number of galaxies

Current catalogs:

a. 2MASS photometric redshift catalog
/0% sky coverage, ~8x10° galaxies

Sowurce redshift distribution b. WISExSuperCosmos
4 F T T TIrITT] T T 11T T T T 1 70% Sky coverage, ~2x107 galaxies
: i - c. SDSS Data Release 12 photometric catalog
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A. Cuoco et al., Astrophys. J. Suppl. 232, 1 (2017); L. Amendola et al., Living Rev. Rel. 21 (2018)
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The galaxy catalogs

To reduce the error on the x-correlation, we want:
1. Large sky coverage
2. Large number of galaxies

Future catalogs:

a. EUCLID photometric catalog
40% sky coverage, ~1.6x10° galaxies

Sowurce redshift distribution b.Vera Rubin Obs (LSST) photometric catalog
4 F T T TIrITT] T T 11T T T T 13 Similar to EUCLID performances
- i - c. SPHEREXx
- | - .
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A. Cuoco et al., Astrophys. J. Suppl. 232, 1 (2017); L. Amendola et al., Living Rev. Rel. 21 (2018)
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Results I: cross-correlation of GW events
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« 2MPZ catalog provides the best performance because of the very good superposition of
the redshift distributions, especially for BNS and BHNS

* However, x-correlation for BBEH quite weak
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Results I: cross-correlation of GW events

Significance of x-correlation

We quantify the significance of deviation from isotropy (b = 0), i.e. no x-correlation with LSS

V)

2" Case HLV HLVIK Detectors

S Type |BNS BBH BHNS|BNS BBH BHNS ®inary populations
S, 2MPZ| 9 0.2 12 |41 0.1 18

s WIxSC| 07 07 4 |17 1.8 83

5 SDSS |00 04 1.0 |24 14 19

(Significance, 6)2

 HLVIK will detect x-correlation at more the 56 for BNS (BHNS) with 2MPZ (WIxSC)

* A 3o signal for BNS (x2MPZ) is in the reach of

 For BBH, detection prospects are poorer because redshift distribution peaks at quite high z
where anisotropy is small (volume effect) => More events are needed or....
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Results lI: cross-correlation of GW events

... A tomographic approach

EUCLID-like galaxy catalog x BBH events analysed in several redshift bins

Detectors
Clase HLV |HLVIK | ET2CE . will not show significant BBH x-correlation detection,
. about 20 with 5 bins

3 Ozbin 0.2 2.6 ° | | | |
3 2,bin 0.9 19 * For HLVIK, tomography is crucial: detection possible at

B . * . . . !
\dtr 3,bin 18 30 4.30 already with 2 bins
9 5zbin 3.6 | |51

v 9zbin 497

* 4zbin (2 > 1) 101

(Significance, 0)=
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Results lI: cross-correlation of GW events

... A tomographic approach

EUCLID-like galaxy catalog x BBH events analysed in several redshift bins

Detectors
Clase HLV | HLVIK | ET2CE . will not show significant BBH x-correlation detection,
. about 20 with 5 bins
3 Ozbin 0.2 2.0 7 o |
3 2,bin 0.9 19  For HLVIK is evident the the crucial role of tomography:
I . ' detection possible at 4.3¢ already with 2 bins only!
Ny 3zbin 1.8 30
v 5zbin 3.6 51 « ET2CE striking significance at 20 for BBH-LSS
§ Ozbin 497 correlation
* 4zbin (z > 1) 101

(Significance, 0)=
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Result lll: BBH-LSS bias reconstruction

We quantify the (10) error on the reconstructed bias

10.0 I T T TTTT] | I T T T T1T17T | IIIIIII:
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For ET2CE: single bin error typically ~10% at low z,
decreases to a few percent for z ~0.5; few %
uncertainties for the combined analysis

For HLVIK: single bin precision of about 20%
at z <0.3, down to 710% for combined analysis
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Conclusions & Outlook

60°

* Full simulation of the detectability compact binary mergers populations for
specific detector configurations, fully accounting for instrumental effects "
(detection threshold, localisation error, etc)

* Use of current (and future) galaxy catalogs whose choice minimises the x-
correlation error and guarantees maximum overlap in redshift distributions

 HLVIK will detect x-correlation at more the 50 for BNS and BHNS with already

available galaxy catalogs
* A 3o signal for BNS is in the reach of !

 For BBH, x-correlation significantly detected with current catalogs and HLVIK
when a tomographic approach is adopted

 The BBH-LSS bias will be reconstructed with 10% (few %) accuracy with
HLVIK (ET2CE)

= Discriminate different models at the origin of BBH (stellar vs primordial)
= Tomography also allows us to study evolutionary effects in the BBH population, if present
= |ncluding e.m. counterpart informations will greatly enhance sensitivity for BNS and BHNS
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Backup



Mock GW catalogs

Positional reconstruction with BAYESTAR



Mock GW catalogs
Positional reconstruction with BAYESTAR

1. What is the error on the luminosity distance, i.e. redshift?

e 20-30% error on reconstructed redshift
* Relative error weakly dependent on SNR
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Mock GW catalogs
Positional reconstruction with BAYESTAR

1. What is the error on the luminosity distance, i.e. redshift?

e 20-30° i
20 SQA error on reconstructed redshift 2. What is the beam shape?
* Relative error weakly dependent on SNR

 Reasonably well localised events (i.e. better
than ~100 deg2at 50% C.L.) have posteriors
well approximated by a 2D Gaussian

* Circular for HLVIK, but significantly
elongated for ET2CE
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Mock GW catalogs
Positional reconstruction with BAYESTAR

1. What is the error on the luminosity distance, i.e. redshift?

e 20-30% error on reconstructed redshift

2. What is the beam shape?
* Relative error weakly dependent on SNR P

 Reasonably well localised events (i.e. better
than ~100 deg2at 50% C.L.) have posteriors
well approximated by a 2D Gaussian

* Circular for HLVIK, but significantly

elongated for ET2CE
3. What is the beam width? R i R
— +*H-W++ + "#‘t++ -
: 0 : : : 10-00 HLVI K + Eabao iy e e - 3
* Conversion of 50% C.L. localisation area in : ikl -
circular Gaussian beam for HLVIK and — RS S
=12CE e F E
* Quality cuts and redshift dependence = . L 1
o = - + ++ ++
* For , 4 deg width w/ no redshift 0.10 oo _
dependence -
0.01 ] ] IIlIlI| ] | IIIIII| | I N T I I |
0.01 0.10 1.00 10.00
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ET2CE: BBH vs BNS event quality reconstruction

BNS larger fraction of events with poor angular resolution makes ET2CE performance more similar to HLVIK ones

SNR hist. HLVIK SNR hist. ET2CE
6000 = el [ | [ [ | | | [ [ | | T I 3 - ! ! | l I l | I I [ | | T | -
T ]
5000 F + e E ox107r +BNS _
- + BHNS E i + BHNS _
c 4000 F + BBH = < I +BBH x 20~
I = = > ax10° -
%) = = o 4x10
c 3000 — —= G - _
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= 2000 = § %105 N
1000 - E i ]
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SNR SNR

SNR distribution of BNS ET2CE is peaked at low SNR, qualitatively similar to the event distribution of the HLVIK

BBH is peaked at SNR ~30, i.e. the BBH sample seen by ET2EC is virtually complete, with the improved sensitivity
resulting in stronger signals

=> Apart for improved statistics, we do not expect the ET2EC sample of BNS to show qualitatively new features
with respect to HLVIK
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Cross-correlation of GW events

Statistical framework

- 12

C((b=1)—C(b
Xz(b) _ Z E,g( 50;3(19) E,g( )

1. Ax2(b): used to compute the one sigma
error on b, when Ax2=1 around b = 1

2. Ax2(b=0): used to quantify the statistical
significance, in g’s, of the cross-
correlation with respect to the isotropic
sky (b = 0)**

GW—-2MP/Z bias

20 I | I 1T 111 | P T PP rifr I rrtr1r1rrriri | F 1T 111111
- ! -
L / _
i / -
I—\' .I —
g ! HLVIK -
i BNS
B cmmmm BHNS —
i S BBH
i . \ - -—1"l‘T1"|—_l..l-—l—-|”—‘i“l.l | I I l-
0 1 2 3 4

l b

Our reference model assumes
that GW events are an unbiased
tracer (b = 1) of LSS

**b=0 is a nested case with respect to the model with b as free parameter
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Results: auto-correlation of GW events
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Q107 / |- 1 |
& : - ] Purely volume effect. In the cases of BBH and BHNS, which extend
1: 10 || P L |2 to larger redshifts, the averaging over a larger volume reduces the
= =L T ‘gggs . final anisotropy and thus the APS normalisation
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Large errors on bias reconstruction
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Results: the relevance of low-z events

200 [
150

> 100

BBH GW—EUCLID bias
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0

4z7bin z>1 _
9zbin z=All_

1 2 3
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Not considering low-z events dramatically decreases the
significance of the detection (from about 20 o to 10 o), even if
only ~ 20% of the events are at z < 1
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