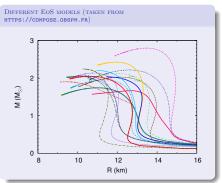
MAXIMUM MASS OF COMPACT STARS FROM GRAVITATIONAL WAVE EVENTS WITH FINITE-TEMPERATURE EQUATIONS OF STATE

Micaela Oertel

micaela.oertel@obspm.fr

In collaboration with S. Khadkikar, A.R. Raduta, and A. Sedrakian

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris/ Université Paris Diderot

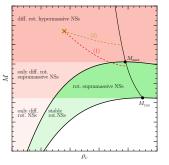

Assemblée Générale, GdR Ondes gravitationnelles, Annecy, October 11-12, 2021

servatoire

INTRODUCTION

MASS-RADIUS RELATION AND THE TOV MASS

- $\bullet \ M \ {\rm and} \ R$
 - ► GR, stationarity+spherical symmetry →TOV system
 - Closed by an equation of state (EoS)
- Matter in old NSs can be considered as cold and in weak (β) equilibrium
- Maximum mass $M^{\star}_{\rm TOV}$ is a GR effect, value given by the EoS \rightarrow strong constraint on the EoS


- $\bullet\,$ Measured pulsar masses give a lower limit on $M^{\star}_{\rm TOV}$
- $\bullet\,$ Precise mass determinations from three NS-WD binaries around 2 M_\odot :

	PSR J1614-2230)	PSR J0348+0432	PSF	PSR J0740+6620 $M = 2.08 \pm 0.07 M_{\odot}$		
	$M = 1.908 \pm 0.016$	M_{\odot}	$M = 2.01 \pm 0.04 M_{\odot}$	M =			
	[Arzoumanian+ 2018]		[Antoniadis+ 2013]		[Fonseca+ 2021]		LUTH
	Laboratore Universe et Théories						
< □ > < 雪 > < 玉 > < 玉 > < 玉 > < 玉 > < 玉 > < 玉 > < 玉 > < 玉 > < へ < < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > <							
Micaela Oertel (LUTH)		M_{TOV} from GW1708117		AG GdR OG, 11/10	0/2021	2/6	

CONSTRAINTS ON TOV MASS FROM GW170817

• Different authors have extracted limits from GW170817

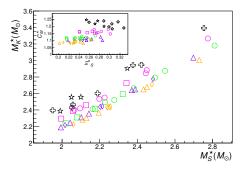
[Margalit & Metzger 2017, Rezzolla+2018, Shibata+ 2019, Ruiz+ 2019,...]

[Rezzolla+ 2018]

Idea :

- No prompt collapse for GW170817, but formation of a differentially rotating HMNS
- Internal viscosities lead to rigid rotation, the star collapses upon crossing the stability line for rigid rotation
- Assumption : stability line crossed close to M_K^\star $_{\rm [Rezzolla+]},$ limits slightly relaxed if $M < M_K^\star$ [Shibata+]

- Universal relation between M_K^{\star} and M_{TOV}^{\star}
- But the merger remnant might still be hot and (partly) out of β -equilibrium upon collapse !


vatoire

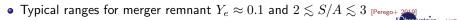
UNIVERSAL RELATIONS

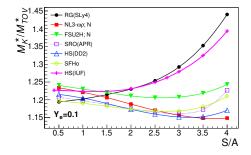
- Universality : relating star's properties independently of the EoS
- Many phenomenologically established ones for cold, $\beta\text{-equilibrated stars, e.g.}$ I-Love-Q relations $_{\rm [Yagi \& Yunes]}$
- Here : maximum (gravitational) mass at the Kepler limit as function of the maximum mass of the nonrotating configuration

[Cook+94,Lasota+96,Breu&Rezzolla2016] $M_K^\star = C_M^\star M_S^\star$

• Valid at finite *T*, too, if same thermodynamical conditions are considered [Raduta+2020,Khadkikar+2021]

• • • • • • • • • • • •


• Similar findings for other relations : Kepler frequency in terms of nonrotating mass and radius, ...


MAXIMUM TOV MASS FROM GW170817

INCLUDING THERMAL EFFECTS IN THE MERGER REMNANT

Thermal effects potentially modify two points in the analysis

- 1. Baryon mass (A) conservation to estimate mass loss from ejection needs $A(M_K^{\star})$ at collapse
- 2. Relating M_K^{\star} to M_{TOV}^{\star} (no longer universal!)
- Calculations with LORENE library; S/A = const and $Y_e = \text{const}$ and a set of finite-temperature EoS
- Competing thermal effects :
 - extend the star (low S/A)
 - increase the supported mass (high S/A)
 - \rightarrow minimum in $M_K^{\star}/M_{\mathrm{TOV}}^{\star}(S/A)$

• • • • • • • • • • • •

SUMMARY

We find from GW170817 [Khadkikar+ 2021]

UNIVERSAL LIMITS FOR HOT NON-ROTATING STARS

 $M_{S}^{\star}(\tfrac{S}{A}=2,Y_{e}=0.1)=2.19^{+0.05}_{-0.03}M_{\odot}, \quad M_{S}^{\star}(\tfrac{S}{A}=3,Y_{e}=0.1)=2.36^{+0.05}_{-0.04}M_{\odot}$

and

Limits for TOV mass (with $C_M^{\star} \approx 1.18$) $2.15^{+0.10}_{-0.07} M_{\odot} < M_{\text{TOV}}^{\star} < 2.24^{+0.12}_{-0.10} M_{\odot}$

Comments :

- Thermal effects relax previous limits, but attention, final value EoS dependent (our EoS set gives a range $1.15 \lesssim C_M^\star \lesssim 1.3$)
- Higher electron fraction \rightarrow smaller $C^{\star}_{M} \rightarrow$ limits further relaxed

イロト イヨト イヨト イヨ

LUTH

servatoire