Remodeling the Effective One-Body Formalism in Post-Minkowskian Gravity

Pierre Vanhove

5ème assemblée GDR ondes gravitationelles LAPP Annecy, France
based on 2104.04510, 2105.05218, 2107.12891, 2108.11248, N.E.J. Bjerrum-Bohr, Poul Damgaard, Ludovic Planté

Classical Gravity from quantum scattering

One important new insight is that the classical gravitational two-body interactions (conservative and radiation) can be extracted from quantum scattering amplitudes

Classical Gravity from quantum scattering

$$
p_{1}, m_{1}, S_{1} \quad p_{1}^{\prime}, m_{1}, S_{1}
$$

$$
p_{2}, m_{2}, S_{2}
$$

For $\hbar, q^{2} \rightarrow 0$ with $q=q / \hbar$ fixed at each loop order the classical contribution is of order $1 / \hbar \quad\left(\gamma=p_{1} \cdot p_{2} /\left(m_{1} m_{2}\right)\right)$

$$
\mathcal{M}_{L}(\gamma, \underline{q}, \hbar)=\frac{\mathcal{M}_{L}^{(-L-1)}\left(\gamma, \underline{q}^{2}\right)}{\hbar^{L+1}|\underline{q}|^{\frac{L(D-4)}{2}}+2}+\cdots+\frac{\mathcal{M}_{L}^{(-1)}\left(\gamma, \underline{q}^{2}\right)}{\hbar|\underline{q}|^{\frac{L(D-4)}{2}+2-L}}+O\left(\hbar^{0}\right)
$$

In this approach the classical gravity physics contributions are determined by the unitarity of the quantum scattering amplitudes

Nove sed non nova: classical observables

Standard Model of Elementary Particles + Gravity

- Classical scattering: scattering angle χ : a lot of physical information for bound orbits
- Quantum scattering for generic EFT of gravity: probability amplitude \mathcal{M}
- Spinning black holes as higher-spin massive particles

The Effective One-Body (EOB) formalism (adapted from Post-Newtonian to Post-Minkowskian formulations) connects the scattering regime to the bound-state regime [Buonano, Damour; Damour]

Effective EOB metric

A general parametrization of the effective metric $g_{\mu \nu}^{\text {eff }}$ in isotropic coordinates

$$
d s_{\mathrm{eff}}^{2}=A(r) d t^{2}-B(r)\left(d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right)
$$

The scattering angle in such an external metric is derived using the principal function

$$
\mathcal{S}=\mathcal{E}_{\text {eff }} t+J_{\text {eff }} \varphi+W(r)
$$

of the associated Hamilton-Jacobi equation

$$
g_{\mathrm{eff}}^{\alpha \beta} \partial_{\alpha} \mathcal{S} \partial_{\beta} \mathcal{S}=\mu^{2}
$$

to obtain

$$
\frac{\mathcal{E}_{\mathrm{eff}}^{2}}{A(r)}-\frac{J_{\mathrm{eff}}^{2}}{B(r) r^{2}}-\frac{1}{B(r)}\left(\frac{d W(r)}{d r}\right)^{2}=\mu^{2}
$$

Effective EOB metric

The scattering angle $d(\chi / 2) / d r \equiv \partial(d W(r) / d r) / \partial J_{\text {eff }}$

$$
\frac{\chi}{2}=J_{\mathrm{eff}} \int_{r_{m}}^{\infty} \frac{d r}{r^{2}} \frac{1}{\sqrt{\frac{B(r)}{A(r)} \varepsilon_{\mathrm{eff}}^{2}-\frac{J_{\mathrm{eff}}^{2}}{r^{2}}-B(r) \mu^{2}}}-\frac{\pi}{2}
$$

comparing with the expression from the radial action

$$
p_{r}^{2}=p_{\infty}^{2}-\mathcal{V}_{\mathrm{eff}}(r, E)-\frac{J^{2}}{r^{2}}
$$

we get

$$
\frac{\chi}{2}=-\int_{\hat{r}_{m}}^{\infty} d r \frac{\partial p_{r}}{\partial J}-\frac{\pi}{2}=b \int_{\hat{r}_{m}}^{\infty} \frac{d r}{r^{2}} \frac{1}{\sqrt{1-\frac{b^{2}}{r^{2}}-\frac{V_{\text {eff }}(r, E)}{p_{\infty}^{2}}}}-\frac{\pi}{2}
$$

For identifying the two expressions under the square root we need the EOB maps for the effective energy, momentum and angular momentum

EOB energy, momentum and angular momentum maps

The effective-one-body formalism is based on the following maps

- The energy map $E=\left(m_{1}+m_{2}\right) \sqrt{1+2 \frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{2}}\left(\frac{m_{1}+m_{2}}{m_{1} m_{2}} \varepsilon_{\text {eff }}-1\right)}$
- The momentum map $p_{\infty}^{2}=\frac{\left(E^{2}-\left(m_{1}+m_{2}\right)^{2}\right)\left(E^{2}-\left(m_{1}-m_{2}\right)^{2}\right)}{4 E^{2}}, \quad \frac{p_{\text {eff }}}{\mu}=\frac{p_{\infty} E}{m_{1} m_{2}}$
- An angular momentum map

$$
b=\frac{J}{p_{\infty}}=\frac{J_{\mathrm{eff}}}{p_{\mathrm{eff}}} \Longrightarrow J_{\mathrm{eff}}=J \frac{p_{\mathrm{eff}}}{p_{\infty}}=J \frac{E}{M}
$$

This maps differs from the one used by Damour $J_{\text {eff }}=J$
The metric coefficients are then fully determined by the effective potential

$$
1-\frac{\nu_{\mathrm{eff}}(r, E)}{p_{\infty}^{2}}=\frac{B(r)}{\gamma^{2}-1}\left(\frac{\gamma^{2}}{A(r)}-1\right)
$$

(-) With these maps we never need any non-metric contributions to the contrary to the "standard" EOB approach of [Buonano, Damour]

Effective EOB metric

In order to fix the parametrisation ambiguity we parameterise the metric coefficient using the Ansatz

$$
A(r)=\left(\frac{1-h(r)}{1+h(r)}\right)^{2} ; \quad B(r)=(1+h(r))^{4}
$$

to get

$$
\begin{aligned}
\left(h(r)+\frac{\gamma-1}{\gamma+1}\right)(h(r)+ & \left.\frac{\gamma+1}{\gamma-1}\right)(1+h(r))^{4} \\
& =(1-h(r))^{2}\left(1+\frac{E^{2}}{\left(\gamma^{2}-1\right) M^{2}} \frac{\nu_{\mathrm{eff}}(r, E)}{v^{2} M^{2}}\right)
\end{aligned}
$$

This equation can always be solved in perturbation theory with $h(r)=\sum_{n \geqslant 1} h_{n}(G M / r)^{n}$ for any perturbatively expanded effective potential $\nu_{\text {eff }}=-\sum_{n \geqslant 1} f_{n}\left(G_{N} M / r\right)^{n}$.

The effective potential from the scattering amplitudes I

We then need to determine the effective potential from the scattering amplitudes

In the isotropic coordinates, there exists a very simple relationship between centre-of-mass momentum p and the effective classical potential $\mathcal{V}_{\text {eff }}(r, p)$ of the form

$$
p^{2}=p_{\infty}^{2}-\nu_{\mathrm{eff}}(r, E) ; \quad \mathcal{V}_{\mathrm{eff}}(r, E)=-\sum_{n \geqslant 1} f_{n}\left(\frac{G_{N}\left(m_{1}+m_{2}\right)}{r}\right)^{n}
$$

the coefficients f_{n} are directly extracted from the scattering angle

$$
\chi=\sum_{k \geqslant 1} \frac{2 b}{k!} \int_{0}^{\infty} d u\left(\frac{d}{d u^{2}}\right)^{k}\left[\frac{1}{u^{2}+b^{2}}\left(\frac{\nu_{\mathrm{eff}}\left(\sqrt{u^{2}+b^{2}}\right)\left(u^{2}+b^{2}\right)}{\gamma^{2}-1}\right)^{k}\right]
$$

Scattering angle

The scattering angle is obtained by from the classical eikonal phase $\delta(\gamma, b)$

$$
\left.\sin \left(\frac{\chi}{2}\right)\right|_{L}=-\frac{\sqrt{\left(p_{1}+p_{2}\right)^{2}}}{m_{1} m_{2} \sqrt{\gamma^{2}-1}} \frac{\partial \delta_{L}(\gamma, b)}{\partial b}
$$

The classical eikonal phase $\delta(\gamma, b)$ is defined by the exponentiation of the S-matrix

$$
1+i \mathfrak{T}=1+i \sum_{L \geqslant 0} G_{N}^{L+1} \mathcal{M}_{L}(\gamma, b)=(1+i 2 \Delta) e^{\frac{2 i \delta(\gamma, b)}{\hbar}}
$$

The classical eikonal phase is then connected to the $1 / \hbar$ coefficient of the scattering amplitude, i.e. the classical part of the amplitude

Exponentiation of the S-matrix

Using an exponential representation of the \widehat{S} matrix [Damgaard, Planté, Vanhove]

$$
\widehat{S}=\mathbb{I}+\frac{i}{\hbar} \widehat{T}=\exp \left(\frac{i \widehat{N}}{\hbar}\right)
$$

with the completeness relation that includes all the exchange of gravitons for $n \geqslant 1$ entering the radiation-reaction contributions $\hat{N}^{\text {rad }}$

$$
\begin{aligned}
\mathbb{I}= & \sum_{n=0}^{\infty} \frac{1}{n!} \int \frac{d^{(D-1)} k_{1}}{(2 \pi \hbar)^{(D-1)}} \frac{1}{2 E_{k_{1}}} \frac{d^{(D-1)} k_{2}}{(2 \pi \hbar)^{(D-1)}} \frac{1}{2 E_{k_{2}}} \\
& \times \frac{d^{(D-1)} \ell_{1}}{(2 \pi \hbar)^{(D-1)}} \frac{1}{2 E_{\ell_{1}}} \cdots \frac{d^{(D-1)} \ell_{n}}{(2 \pi \hbar)^{(D-1)}} \frac{1}{2 E_{\ell_{n}}} \times\left|k_{1}, k_{2} ; \ell_{1}, \ldots \ell_{n}\right\rangle\left\langle k_{1}, k_{2} ; \ell_{1}, \ldots \ell_{n}\right|
\end{aligned}
$$

Exponentiation of the S-matrix

$$
\begin{aligned}
& \hat{N}_{2}=\hat{T}_{2}-\frac{i}{2 \hbar}\left(\hat{T}_{0}^{\mathrm{rad}}\right)^{2}-\frac{i}{2 \hbar}\left(\hat{T}_{0} \hat{T}_{1}+\hat{T}_{1} \hat{T}_{0}\right)-\frac{1}{3 \hbar^{2}} \hat{T}_{0}^{3} \\
& \\
& =N_{2}=M_{2}-\frac{i}{2} \\
& \hdashline M_{0}^{\text {rad }} \\
& \\
&
\end{aligned}
$$

Velocity cuts

In practice, we need only evaluate matrix elements in the soft \underline{q}^{2}-expansion, this means that we expand genuine unitarity cuts around the velocity cuts introduced recently ${ }_{[B j e r r u m-B o h, ~ D a n g a a r d, ~ P l a n t e ́, ~ V a n h o v e] ~}^{\text {en }}$

These velocity cuts seem to provide the most natural way to organise amplitude calculations.

From the complete determination of the two-body amplitude up to 3PM in [Bjerrum-Bohr, Dangaard, Planté, Vanhove] we have a full control of the scattering from the small velocity to the high energy limit

Conclusion

We have given a new way of connecting the scattering amplitude to the EOB effective potential
(1) Changing the map between the effective angular momentum $J_{\text {eff }}$ and J simplifies drastically the determination of the effective EOB metric from the effective potential with no need non-metric terms
(2) A new exponentiation formula and the velocity cuts males the relation between the classical part of the scattering amplitude and the effective potential simple and efficient ${ }_{\text {[Bjerrum-Bohr, Damgaard, Planté, Vanhove] }}$
(3) From the complete evaluation of the 2-body scattering to 3 PM order we have the effective metric including the radiation-reaction term
(9) We have derived the amplitude in D dimensions to 3PM order and to 5PM order in the probe limit [Bjerrum-Bohr, Planté, Vanhove, to appear]
(3) gravity is richer in higher dimensions! Since the amplitude approach has been validated in higher-dimensions we can explore various interesting classical gravity physics in higher dimensions

