

Learning-based representation of gravitational wave signals for LISA data analysis

Cinquième Assemblée Générale du GdR Ondes Gravitationnelles | Aurore BLELLY

Oct. 12, 2021

Laser Interferometer Space Antenna A Space Interferometer (ESA Mission)

Introduction

LISA mission

Galactic Binaries

Preliminary Results

IAE

- 3 satellites 2.5 millions km one from another
- Follows the movement of the Earth on its orbit
- Probes a frequency range that is still unexplored
 ⇒ high potential for new discoveries
- Launching: 2034

¹https://www.esa.int/Science_Exploration/Space_Science/LISAq @ A. Blelly | GdR OG Oct.2021 | 2/16

Galactic Binaries

Introduction

LISA mission

Galactic Binaries

IAE

Preliminary Results

- 20.000 expected observable systems, 8 parameters/system
- Standard approach: parameter estimation (MCMC / Bayesian approach)
- High computing cost both for waveform production and parameter estimation.

Galactic Binaries

Introduction I ISA mission Galactic Binaries

IAE

Preliminary Results

- Standard approach: parameter estimation (MCMC / Bayesian approach)
- High computing cost both for waveform production and parameter estimation.

Objectives

Introduction

LISA mission Galactic Binaries

IAE

Preliminary Results

- 2 main objectives:
 - Detection
 - Signal estimation/extraction
- Develop a method that can be adapted for any type of sources
 - GBs, MBHMs, MBHBs, glitches
- Fast **generative** parameter-free model
 - good fast representation of sought signals

Sparse representation in Fourier Basis ²

Introduction
LISA mission
Galactic Binaries

IAE

Preliminary Results

Conclusion

Signal estimation using a sparsity prior

- Took part in LDC1-3: all sources detected
- Gaps: sources deterioration
- Recovered signal only partially represents the sought source, no possibility to separate sources.

A. Blelly

GdR OG Oct.2021 | 5 / 16

²A. Blelly, J. Bobin, H. Moutarde, *Sparsity Based Recovery of Galactic Binaries Gravitational Waves*

Interpolatory Auto Encoder (IAE) ³ Learning how to travel on a manifold

Introduction
LISA mission
Galactic Binaries

IAE

Preliminary Results

Conclusion

- Find a space where the signal can be represented **simply**.
- Build a representation upon the availability of samples: "Anchor Points"
- Non-linear dictionary learning

³J.Bobin, R.Carloni Gertosio, C.Bobin, C.Thiam, *Non-linear* interpolation learning for example-based inverse-problem regularization

Introduction I ISA mission

Galactic Binaries

Interpolatory Auto Encoder (IAE) Architecture

Output

Input

training set

Points Element of

Linear Interpolator

Decoder

Preliminary Results Conclusion

IAE

Linear interpolator:
$$\{\hat{\lambda}_i\} = \operatorname{Argmin}_{\{\lambda_i\}_i} \|\Phi(\mathbf{x}) - \sum_i \lambda_i \Phi(\mathbf{e}_i)\|_2^2$$

- If all goes well: $\exists \{\lambda_i\}_i$ s.t. $x \simeq \Psi\left(\sum_i \widehat{\lambda}_i \Phi(e_i)\right)$

Interpolatory Auto Encoder (IAE) Manifold projection for inverse problem

Introduction I ISA mission Galactic Binaries

Preliminary

Results Conclusion

Introduction I ISA mission Galactic Binaries

IAE

Preliminary Results

Conclusion

- $lue{}$ 2 dense hidden layers both for Φ and Ψ
 - \blacksquare 1 layer = 128 neurons
 - input size = 128 frequency bins (waveforms in Fourier domain over 1 year observation, cut around main frequency)

A. Blelly

⁴A. Blelly, J. Bobin, H. Moutarde, *Sparse data inpainting for the* recovery of Galactic-binary gravitational wave signals from gapped data of a

Introduction
LISA mission
Galactic Binaries

IAE

Preliminary Results

- lacksquare 2 dense hidden layers both for Φ and Ψ
 - 1 layer = 128 neurons
 - input size = 128 frequency bins (waveforms in Fourier domain over 1 year observation, cut around main frequency)
- Training set:
 - 5000 waveforms (fixed frequency for now)
 - can be reduced down to 1000 samples with no major quality degradation

⁴A. Blelly, J. Bobin, H. Moutarde, *Sparse data inpainting for the recovery of Galactic-binary gravitational wave signals from gapped data*

Introduction

LISA mission

Galactic Binaries

IAE Preliminary

Results

Conclusion

- lacksquare 2 dense hidden layers both for Φ and Ψ
 - 1 layer = 128 neurons
 - input size = 128 frequency bins (waveforms in Fourier domain over 1 year observation, cut around main frequency)
- Training set:
 - 5000 waveforms (fixed frequency for now)
 - can be reduced down to 1000 samples with no major quality degradation
- Anchor points: between 7 and 50 (ideally: manifold dimension + 1)

A. Blelly

⁴A. Blelly, J. Bobin, H. Moutarde, *Sparse data inpainting for the recovery of Galactic-binary gravitational wave signals from gapped data*

Introduction

LISA mission

Galactic Binaries

Preliminary Results

Conclusion

Conclusion

- $lue{}$ 2 dense hidden layers both for Φ and Ψ
 - 1 layer = 128 neurons
 - input size = 128 frequency bins (waveforms in Fourier domain over 1 year observation, cut around main frequency)
- Training set:
 - 5000 waveforms (fixed frequency for now)
 - can be reduced down to 1000 samples with no major quality degradation
- Anchor points: between 7 and 50 (ideally: manifold dimension + 1)
- Fast training: ~ 20 min on a laptop

A. Blelly

⁴A. Blelly, J. Bobin, H. Moutarde, *Sparse data inpainting for the recovery of Galactic-binary gravitational wave signals from gapped data*

Introduction
LISA mission
Galactic Binaries

IAE

Preliminary Results

Conclusion

- \blacksquare 2 dense hidden layers both for Φ and Ψ
 - \blacksquare 1 layer = 128 neurons
 - input size = 128 frequency bins (waveforms in Fourier domain over 1 year observation, cut around main frequency)
- Training set:
 - 5000 waveforms (fixed frequency for now)
 - can be reduced down to 1000 samples with no major quality degradation
- Anchor points: between 7 and 50 (ideally: manifold dimension + 1)
- Fast training: ~ 20 min on a laptop
- "Plug and Play" method: can directly be used in algos already developed. (ex: inpainting algorithm ⁴)

A. Blelly

GdR OG Oct.2021 | 9 / 16

⁴A. Blelly, J. Bobin, H. Moutarde, Sparse data inpainting for the recovery of Galactic-binary gravitational wave signals from gapped data

LISA mission
Galactic Binaries
IAE
Preliminary
Results

Performance Assessment Comparison between IAE and Direct Domain representation

Our quality estimator: Normalized Mean Square Error (NMSE)

$$NMSE = -10\log_{10}\left[\frac{\|y^{true} - y^{est}\|^2}{\|y^{true}\|^2}\right]$$

- High (>> 1) when y^{est} is close to y^{true}
- Low / negative when estimation is bad.

LISA mission
Galactic Binaries
IAE
Preliminary
Results

Conclusion

Performance Assessment Comparison between IAE and Direct Domain representation

Our quality estimator: Normalized Mean Square Error (NMSE)

$$NMSE = -10\log_{10}\left[\frac{\|y^{true} - y^{est}\|^2}{\|y^{true}\|^2}\right]$$

- High (>> 1) when y^{est} is close to y^{true}
- Low / negative when estimation is bad.

We will look at its **distribution** on a given test set (1000 waveforms with different parameters).

LISA mission
Galactic Binaries
IAE
Preliminary
Results

Conclusion

Performance Assessment Comparison between IAE and Direct Domain representation

Our quality estimator: Normalized Mean Square Error (NMSE)

$$NMSE = -10\log_{10} \left[\frac{\|y^{true} - y^{est}\|^2}{\|y^{true}\|^2} \right]$$

- High (>> 1) when y^{est} is close to y^{true}
- Low / negative when estimation is bad.

We will look at its **distribution** on a given test set (1000 waveforms with different parameters).

We will compare the quality of signal:

- estimated by IAE
 - directly estimated on the span of anchor points in direct domain.

A first trial with 20 APs Distribution of quality of restored signal on test set

Introduction

LISA mission Galactic Binaries

IAE

Preliminary Results

Reconstruction of **non-noisy** signals

- LS: Least Squares (simple projection on APs)
- NMSE: quality of signal estimate

A first trial with 20 APs Distribution of quality of restored signal on test set

Introduction

Galactic Binaries

IAE

Preliminary Results

Reconstruction of noisy signals

- LS: Least Squares (simple projection on APs)
- NMSE: quality of signal estimate

Over-fitting noisy signal A criterion to set the number of anchor points

Noisy signals:

110139 31611

Introduction

Galactic Binaries

Proposed solutions:

■ Decrease the number of anchor points:

$$dim(Manifold) = \#Parameters$$

$$\#APs = dim(Manifold) + 1$$

Change model / interpolation function

Galactic Binaries
IAE
Preliminary

Results

Conclusion

Over-fitting noisy signal A criterion to set the number of anchor points

Noisy signals:

Proposed solutions:

■ Decrease the number of anchor points:

$$dim(Manifold) = \#Parameters$$

$$\#APs = dim(Manifold) + 1$$

■ Change model / interpolation function

Drastically reducing the number of anchor points

John Polym

Toward a "best" adapted representation

Introduction

LISA mission Galactic Binaries

IAE

Preliminary Results

Quality of reconstructed signal for SNR = 5

- For #AP = 8
- Stronger constraint on sought signal

points

Drastically reducing the number of anchor

Infu CEA - Saciay

Toward a "best" adapted representation

Introduction
LISA mission

Galactic Binaries

Preliminary Results

Quality of reconstructed signal for SNR = 20

- For #AP = 8
- Stronger constraint on sought signal

points

Drastically reducing the number of anchor

Infu CEA - Saciay

Toward a "best" adapted representation

Introduction
LISA mission

Galactic Binaries

IAE

Preliminary Results

Quality of reconstructed signal for SNR = 50

- For #AP = 8
- Stronger constraint on sought signal

Drastically reducing the number of anchor

points Toward a "best" adapted representation

Introduction LISA mission

Galactic Binaries IAE

Preliminary

Results

Conclusion

Quality of reconstructed signal for $SNR = \infty$ (= no noise)

- For #AP = 8
- Stronger constraint on sought signal

Recovered waveforms for 7 APs Reduced noise over-fitting

Introduction

LISA mission Galactic Binaries

IAE

Preliminary Results

- Greatly reduced noise over-fitting!
- Really good recovery of waveform tails, even below noise level

Detection and extraction How can a signal be detected?

Introduction

LISA mission

Galactic Binaries

IAE

Preliminary Results

Conclusion

Estimated signal SNR for noise-only inputs and for $\emph{SNR}=5$ inputs.

- **P-value test:** compare estimated SNR with distribution obtained for noise-only inputs.
- obtained for noise-only inputs.

 seems to work even for weak amplitude inputs signals!

A. Blelly

GdR OG Oct.2021

Prospects and future works

Introduction

LISA mission

Galactic Binaries

IAE

Preliminary Results

Conclusion

Work in Progress:

■ Fast generative model to extract waveforms from measurements

Further prospects:

- Current results shown at fixed frequency. Preliminary tests on a whole frequency range are encouraging.
- Link representation between different data channels to improve robustness against noise
- Trying to link the learned space to parameter space in order to estimate parameters.

Commissariat à l'énergie atomique et aux énergies alternatives

Introduction
LISA mission
Galactic Binaries

IAE Preliminary

Results

Conclusion

Choose the best anchor points using ~ reverse
 basis-pursuit algorithm. We start from a wide set of anchor points and we eliminate the ones carrying the least information.

Introduction
LISA mission
Galactic Binaries

IAE Preliminary Results

Camaluaian

Choose the best anchor points using ~ reverse
 basis-pursuit algorithm. We start from a wide set of anchor points and we eliminate the ones carrying the least information.

■ Lots of APs = lots of information redundancy.

Introduction

LISA mission

Galactic Binaries

IAE

Preliminary Results

Conclusion

■ Choose the best anchor points using ~ reverse basis-pursuit algorithm. We start from a wide set of anchor points and we eliminate the ones carrying the least information.

- Lots of APs = lots of information redundancy.
- We regularize by adding a sparsity constraint to the interpolator:

$$\{\widehat{\lambda}_i\} = \underset{\{\lambda_i\}_i}{\operatorname{Argmin}} \left\| \Phi(x) - \sum_i \lambda_i \Phi(e_i) \right\|_2^2 + \sum_i \underbrace{\gamma_i}_{\substack{\text{learned} \\ \text{def}}} |\lambda_i|$$

Introduction

LISA mission

Galactic Binaries

Preliminary Results

IAE

Conclusion

- Choose the best anchor points using ~ reverse basis-pursuit algorithm. We start from a wide set of anchor points and we eliminate the ones carrying the least information.
- Lots of APs = lots of information redundancy.
- We regularize by adding a sparsity constraint to the interpolator:

$$\{\widehat{\lambda}_i\} = \underset{\{\lambda_i\}_i}{\operatorname{Argmin}} \left\| \Phi(x) - \sum_i \lambda_i \Phi(e_i) \right\|_2^2 + \sum_i \underbrace{\gamma_i}_{\substack{\text{learned therelold}}} |\lambda_i|$$

REMARKABLE OUTCOME: the most used anchor points are always the same!

Introduction I ISA mission Galactic Binaries

Preliminary Results

IAE

 \blacksquare Choose the best anchor points using \sim reverse basis-pursuit algorithm. We start from a wide set of anchor points and we eliminate the ones carrying the least information.

- Lots of APs = lots of information redundancy.
- We regularize by adding a sparsity constraint to the interpolator:

$$\{\widehat{\lambda}_i\} = \underset{\{\lambda_i\}_i}{\operatorname{Argmin}} \left\| \Phi(x) - \sum_i \lambda_i \Phi(e_i) \right\|_2^2 + \sum_i \underbrace{\gamma_i}_{\text{learned}} |\lambda_i|$$

- REMARKABLE OUTCOME: the most used anchor points are always the same!
- Compromise between over-fitting and under-fitting the data

Signal-to-Noise Ratio (SNR)

Introduction
LISA mission
Galactic Binaries

Preliminary Results

IAE

Conclusion

■ **SNR**: Signal-to-Noise Ratio

$$SNR(X) = \mathbb{E}\left[\frac{|X|^2}{\sigma^2}\right]$$

The greater it is, the more the signal is above noise level $\ / \$ detectable

- P-Value:
 - Test H_0 : there is no signal against H_1 : there is at least one signal
 - Fixing a threshold for decision on estimated SNR