The Athena X-IFU Supernova Remnants science case

F. Acero Astrophysics department/AIM, CEA/Paris-Saclay

Journées du PNHE, septembre 2021

Supernova Remnant: what do we see ?

2

What do we learn ?

Accelerated particles

- Acceleration mechanism
- Composition (e- and/or p)
- Acceleration efficiency
- Maximal energy reached
- Escape (diffusion)

Shocked ISM

- Probe of the ISM:
 - density, metalicity
 - clues for SN progenitor
 - acceleration initial conditions
- Collisionless shock physics:
 - mass & V_{shock} relation
 - e⁻/p T^o equilibration

Messengers:

Shocked ejecta

•Supernova yield:

- SN type
- mass of progenitor
- metalicity of progenitor
- •Morphology and kinematics:
 - 3D ejecta distribution
 - SN explosion mechanism

Radio, X, Gamma-rays, v

Optical, UV, X-rays

IR, optical, X-rays

Core collapse explosion mechanisms

- What can the remnant tell us about the supernova explosion ?
- Explosion mechanisms leave fingerprints in the ejecta
- Key observables: 3D distribution, ejecta velocity and abundances ratio
- Proper motion (over 10-20 yrs) & radial velocity (Doppler effect)

- Shock powered by energy deposition from the 10⁵³ ergs in neutrinos
- Role of hydro instabilities in neutrino heating
 - Sloshing motions (SASI). ~large scale

see J. Guilet's talk

- Neutrino buoyant convection. ~smaller scale

Neutrinos produce low density, high temperature regions

High entropy neutrino driven convection explosion

 Outward Ti, Cr, Fe plumes due to buoyant high entropy (low density, high temperature) bubbles pushing ejecta outwards

High entropy neutrino driven convection explosion

Collisionless shock heating

- X-ray CCD cameras can only measure kT_e via Bremsstrahlung
- High resolution spectro can measure kT_p via ion line broadening
 - Study of shock in SNRs can probe kTp for different ions & velocity
 - Understand prompt heating mechanism
 - A high spatial resolution is needed to isolate heating at the shock & reduce ejecta contamination

Probing acceleration efficiency via line broadening

- Efficient particle acceleration pumps energy out of the shock
 - Less energy is available for shock heating
 - Measuring kT_p (line broadening) in regions with/without particle acceleration could probe the fraction of shock energy transfered to Cosmic-Rays

Data analysis - A 3D approach

CasA Chandra X,Y,E cube

Data visualization of CassiopeiaA seen with Chandra

Data analysis - A 3D approach

Data visualization of CassiopeiaA seen with Chandra

Energy

Athena X-IFU:

a transformational view of the X-ray Universe

Compared to XRISM X-IFU will be a game changer for extended sources (pixels, FoV, PSF)

- Athena : high effective area, ~eV spectral resolution
- How to analyze such datasets ?
 - Cubes of Nx,Ny,N_E ~ $3x10^3 x 3x10^4 => 100$ millions voxels
- Need to consider the cube as a whole not only 2D then 1D
 - Disentangling components using spectro-morphological diversity

Blind source separation example: Generalized Morphological Component Analysis (Bobin 2015)

Main idea: different physical components (e.g. CMB vs synchrotron) have different morphological & spectral signatures in the data cube

Assumption: Linear combination : data = Σ spec_i*image_i

Blind source :estimate all a_i & s_i with no prior info Number of components fixed by the user

Application to CasA Chandra dataset

Methodology, Toy models & application examples from Picquenot, Acero, et al., 2019

3D assymetries in CasA

Important role of assymetries in the SN explosion see J. Guilet's talk

Analysis Challenges

Handling 4D (X,Y,E,T) data

- X-IFU data are multi-D in nature and we should exploit them more that way data as 3D/4D products (ground segment, pipeline, user analysis, etc)
- Need to develop these new product tools & 3D analysis (e.g. deblending)

Fitting methods

- Statistical tools (e.g. Bayesian workflows), modern minimizers
- Cosmology, surveys, etc have entered the ML & adv. signal processing era. Where is the French X-ray community standing ?

Astrophysical models & HR spectroscopy

- Atomic Data base
- Multi-D astrophysical models (spatial, spectra, time, polarimetry)
- HR spectro: identify expertise in France
- Need to put our hands on XRISM data (who has access, proposals ?)

Training the current+younger generations ==> workshop, Athena summer schools

Conclusion

- Grating spectroscopy and XRISM observations are limited for ext src:
 Imaging + HR spectroscopy with X-IFU is a game changer
- SNRs are a laboratory of high-energy astrophysics:
 - supernova explosion, collionless shock physics, particle acceleration
- Need to develop specific tools to harness the power of XIFU spectro-imaging capabilities
 - deblending of superimposed components
 - 3D deprojection using Doppler effect
 - cube fitting & physical parameter mapping
- Extra-galactic SN & SNRs:
 - SN progenitor mass-loss history
 - Circumstellar interactions

Kepler X-IFU simulation around Si XIII line

Kepler simulation for X-IFU 50 ks

GMCA algorithm (Bobin 2015)

Estimating both A & S is an ill posed inverse problem.

Adding a constraint on sparsity of images in the wavelet domain The algorithm is iterative:

- Step 1: Estimation of S for fixed A, by simultaneously minimizing $||X AS||_F$ and the term enforcing sparsity in the Wavelet domain;
- Step 2: Estimation of A for fixed S by minimizing $||X-AS||_F$.

Using GMCA for X-IFU SIXTE simulations

