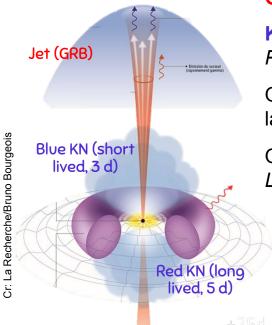


Follow-up of ZTF-FINK alerts with GRANDMA and Kilonova-Catcher

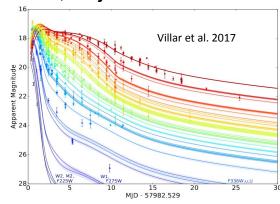

P-A Duverne on behalf of the GRANDMA and FINK collaborations

duverne@ijclab.in2p3.fr

Kilonovae

GRB: Powered by on-axis jet

Kilonova (KN): Optical and NIR transient Powered by r-process in neutron rich environment


Observed properties change with mass ratio, equation of state of NS, lanthanide fraction, nature of the post-merger

Only one clear confirmed event (AT2017gfo)

Less than 10 candidates found by Tanvir et al., Troja et al.

AT20179fo/GW170817 properties

- 40 Mpc
- Localized in NGC4993
- Identified by SSS in a 39 deg2 LIGO skymap
- ~10 Galaxies compatible
- Absolute -16 mag in K-band mag
- Fading in 0.5 mag per day

Science opportunities

1. Cosmology

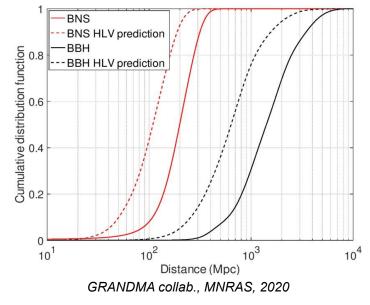
Independent measure of H₀ (Coughlin et al.)

2. Nuclear Astrophysics

- **r-Process**: lanthanide and actinide synthesis (Barnes et al., Dvorkin et al.)
- Dense matter: EOS of NS (Essick et al.)

3. Physics of the ejecta (post-merger)

- **GRB population associated to Kilonovae**: total energie,
- **Stellar population**: Galaxy morphology of binary neutron stars mergers



Kilonovae Challenges

Challenge	Solution
Short lived	Speed
Faint - Peak at 20.5 mag at 200 Mpc	Deep Observations
Rapid Color Evolution	Observation in g and r bands (adding i if possible)
Large localisation uncertainties + Many alerts to follow	No duplication Coordination of Observations
+ Well sampled lightcurves	Choosing alerts

- Need a Network of <u>Telescopes</u> and <u>People</u>
- Using only GW triggers is not enough ->
 Orphan KN discovery are necessary

Orphan Kilonovae

- With public data from optical surveys
- Increase the kilonova sample with a larger diversity
- Refine the intrinsic population rate

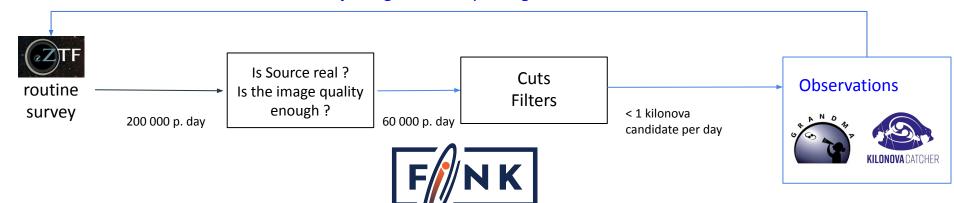
Depending on the model used and the cadence chosen by LSST:

- O(10) - O(100) KNe expected during the Survey observation (Andreoni et al. 2021)

Additional Challenges

- No access to the merger time provided by external triggers (GRBs or Gws)
 - Lack of early information (photo or spectro)
- Many contaminants in optical domain (SNe, Novae, GRB afterglows, ...)

- Highly telescope time consuming
- Lack of practice (only AT2017gfo so far)



Our proposition

One point per source evr. 2 days in 2 colors

Re-injecting obs for improving the classifications



Where? Which? When?

How to deal with multiple-telescopes? How to deal with Galaxy contamination?

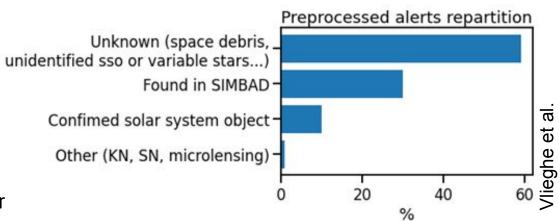
ref. Peloton, 10.09.2021

Alerts/night	300,000
Data/night (alerts only)	10 GB
Depth	20,5 mag
Area covered	10% sky/hour
Photometric bands	g, r
Camera resolution	600 Mpx
Mirror size	1.2m
Field of view	47 deg ²

Wide field survey at Palomar observatory, California

- Used as a prototype for the LSST science
- O(1) kilonova expected for ZTF
- A lot of alerts produced every night

A broker: FINK


Fink: process and annotate the ZTF alert stream (and LSST in the future). It has been prototyped with ZTF and is designed to satisfy LSST requirements.

Study **Supernovae**, variable stars, microlensing, solar system, **GRB**, **Kilonovae...**

The aim of Fink-GRANDMA collaboration is to **coordinate** available resources to optimize the **search** and **identification** of **kilonova candidates**.

Challenges:

- massive number of alerts
- little information on the alerts
- various objects

FINK is one of the seven official LSST broker

Alerts classification

Quality filter:

- No bad pixel flagged in the image
- real bogus score > 0.55
- ~70% alerts discarded

ML based classification :

- Light curve classifier :
 - PC extraction of the LC via Fink simulations
 - Random forest trained on simulations
- Luminosity decay rate :
 - KN are rapidly evolving : >= 0.3mag/day
 - require at least 2 days of obs in practice to get a reliable score

Cross match with nearby galaxies :

- Use **Mangrove** (Ducoin et al. 2020) to associate the near-by host
- Use distance info to evaluate Abs mag (~-16 mag as peak for kilonovae)
- Quasi-instantaneous : Max 6h after the alert

Filter	Number of alerts per month	NB of unique objects per month
No filter	~2,000,000	~700,000
ML based	~20	~10
Mangrove	~10	~10

Number of alerts **after quality filtering**.for 5 months 01.04.2021 to 31.08.2021

Courtesy of J.Peloton

< 0.001% of candidates remaining after the filtering of the alerts

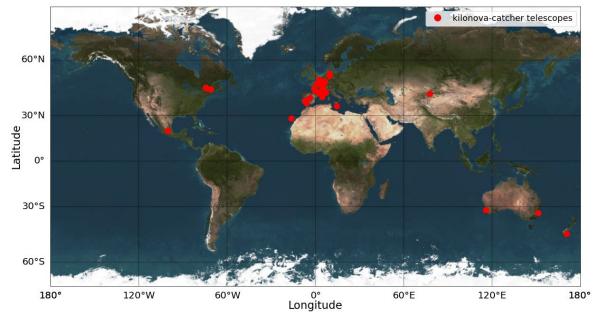
Global Rapid Advanced Network Devoted to Multi-messenger Addicts

Created in 2018, by LAL – OCA PI. S. Antier

Already a large Community

29 groups - 15 countries 75 scientists CNRS/- APC - IAP - IJCLab - OCA -IRAP — LAM - IPHC - CCPM

Wide-fields up to 20 mag, EM candidates ~ 23 mag in photometry (6h per semester on the CFHT in 2021)


22 mag in spectroscopy

Kilonova-Catcher

Kilonova-Catcher current network: 70 telescopes

GRANDMA's citizen science program

Created in 2019

PI: S. Antier

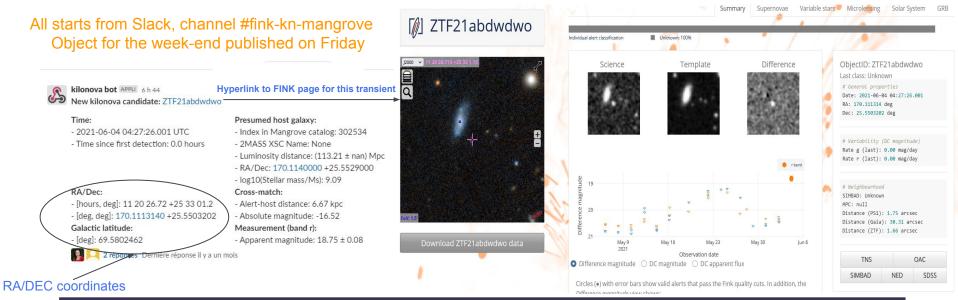
Now 100 amateur astronomers

Used for the galaxy targeting strategy

Already performed some observation during O3

Currently working on the skill improvement

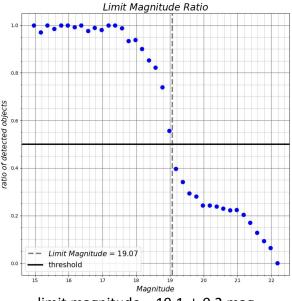
Project funded by PNHE



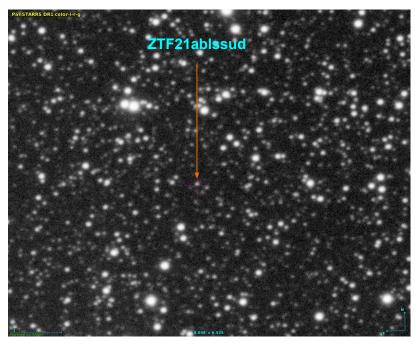
Ready for O4 (June - September 2021)

- ReadyforO4 → Goal = be ready to (1) search for kilonovae upon alerts and (2) characterize light curve
 - → train the amateurs for alerts, observation, preprocessing, uploading
 - → train professionals to process our data
 - → 10 alerts followed so far ~8 observers/alerts in avg (min 4; max 12) GRANDMA and Kilonova-Catcher

Running since 3 months now with Targets of Opportunity (ToO) extracted by the pros out of the ZTF observations for goal (2)



Example: ZTF21ablssud



13

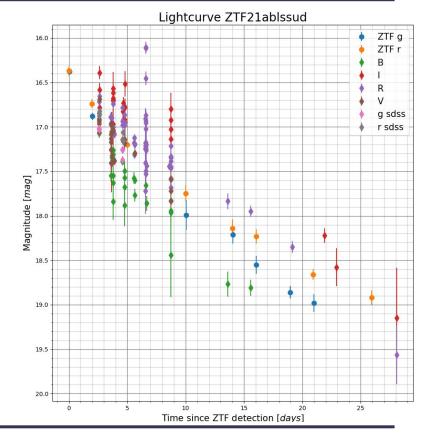
- Detection: 2021-06-04 04:27:26.001
- 147 images by 11 pro and amateurs astronomers
- 9 different bands: g, r, i, B, V, R, I, L and Clear

limit magnitude = 19.1 ± 0.2 mag

ZTF21abdwdwo by D. Boutigny (R band)

Ra = 289.1551294 deg Dec = 24.409455 deg

Image reduction



std_pipeline (WP leader : **S. Karpov**):

- Detection pipeline
- Photometry pipeline
- Design using KN images

MUPHOTEN (WP leader : **PA. Duverne**):

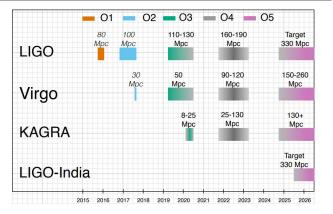
- Photometry pipeline
- Designed using GRANDMA images

Future for GRANDMA-FINK

https://www.ligo.org/

KAGRA Collaboration, LIGO Scientific Collaboration, and Virgo Collaboration

Short Term:


- Continue training for O4
- Follow-up the most promising KN Kilonova candidates
- Improve Fink classification

Medium term:

Follow up the O4 alerts

Long term:

- Follow-up LSST most promising alerts
- > 05 GW alerts

Alerts/night	1 * 10 ⁷	
Data/night (alerts only)	1TB	مَّر
Depth	25 mag	Courtesv of 1 Vieahe
Area covered	30% sky/day	_
Photometric bands	u, g, r, i, z, y) }
Camera resolution	3200 Mpx	T a
Mirror size	8.4 m	ح
Field of view	3.5 deg ²	

LSST Characteristics

14/09/2021

15

References

Andreoni et al.: https://arxiv.org/pdf/2106.06820.pdf

Villard et al.: https://arxiv.org/pdf/1710.11576.pdf

Tanvir et al.: https://arxiv.org/abs/1710.05455

Troja et al.: https://www.nature.com/articles/s41467-018-06558-7

Coughlin et al.: https://www.nature.com/articles/s41467-020-17998-5

Barnes et al.: https://arxiv.org/abs/2010.11182

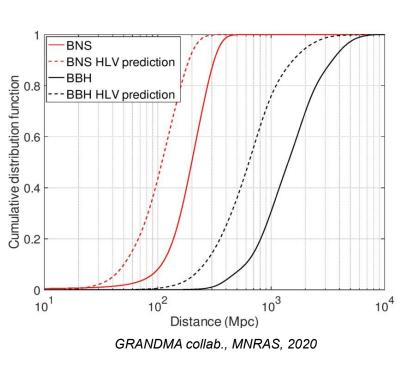
Dvorkin et al.: https://arxiv.org/abs/2010.00625

Essick et al.: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.123007

GRANDMA papers: https://arxiv.org/abs/1910.11261 & https://arxiv.org/abs/2004.04277

ZTF papers: https://arxiv.org/abs/1902.01932 & https://arxiv.org/abs/2102.11304

LSST Science book: https://arxiv.org/abs/0912.0201


Ready for O4 Tutorial for astronomers: https://www.youtube.com/watch?v=7VajPXBNvmA

Collecting MM sample of GW events, a real challenge

17

Predicted rates for BNS and BHNS mergers based on O3 GW constraints:

- 1 (+10 -1) per year in the 200 Mpc
- **10 (+52 -10)** in the 400 Mpc

GW170817 at 40 Mpc -> 1 event every ~ 12 years

Up to 1 GW alert per day in O4 (HLV prediction)

KN **peak magnitude** > **20.5** mag for a BNS merger within **200 Mpc**

GRB: < 1 GW + GRB per year observable by Fermi