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Outline

● Transdisciplinary context

● Candidates

● Multimessenger signatures and recent progresses



  

Context (1): Cosmology

LCDM impressively successful so far (Nobel prize to J. Peebles):
- compelling interpretation of CMB, BBN, LSS, structure formation, etc.

But increasing observational precision has led to tensions btw diff probes:
- Tensions on large scales
- Tensions on small scales
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LCDM impressively successful so far (Nobel prize to J. Peebles):
- compelling interpretation of CMB, BBN, LSS, structure formation, etc.

But increasing observational precision has led to tensions btw diff probes:
- Tensions on large scales
- Tensions on small scales The H0 tension

(distant vs. local probes)

The S8 tension
(discrep. amplitude of 

matter power 
spectrum on large 

scales)

Di Valentino+’21 /  Visinelli (github)Heymans+’20



  

Context (1): Cosmology

LCDM impressively successful so far (Nobel prize to J. Peebles):
- compelling interpretation of CMB, BBN, LSS, structure formation, etc.

But increasing observational precision has led to tensions btw diff probes:
- Tensions on large scales
- Tensions on small scales

Keep in mind (large scales):

- LCDM not secured yet (+ dark components unknown)
- Tensions might have implications on properties of DM (the S8 tension mostly)



  

Context (1): Cosmology

LCDM impressively successful so far (Nobel prize to J. Peebles):
- compelling interpretation of CMB, BBN, LSS, structure formation, etc.

But increasing observational precision has led to tensions btw diff probes:
- Tensions on large scales
- Tensions on small scales

The core-cusp 
problem

Halo mass 
density

ρ(R)

Cuspy halo

Cored halo

Radius (R)

Mass density profiles of galactic halos:

- predicted cuspy down to very inner parts
(NFW, Einsato)

- halo mass fixes all parameters

… but found cored in significant fraction of 
galaxies (not always).



  

Context (1): Cosmology

LCDM impressively successful so far (Nobel prize to J. Peebles):
- compelling interpretation of CMB, BBN, LSS, structure formation, etc.

But increasing observational precision has led to tensions btw diff probes:
- Tensions on large scales
- Tensions on small scales

Halo mass 
density

ρ(R)

Cuspy halo

Cored halo

Radius (R)

Regularity problem

Total acceleration tightly correlated with 
baryonic acceleration

(Mass Discrepancy Acceleration Relation).

(NB: predicted by MOND)

Tulin+18 (Oman+15)
Diversity problem

Diversity problem

Halos of similar masses (Vmax) have a large 
scatter in central properties (Vcirc)

The core-cusp 
problem

Recast galaxy rotation curves

McGaugh+16
(MDAR)

Sofue ‘17



  

Context (1): Cosmology

LCDM impressively successful so far (Nobel prize to J. Peebles):
- compelling interpretation of CMB, BBN, LSS, structure formation, etc.

But increasing observational precision has led to tensions btw diff probes:
- Tensions on large scales
- Tensions on small scales

Halo mass 
density

ρ(R)

Cuspy halo

Cored halo

Radius (R)

Keep in mind (small scales)

- Cusp/core puzzle (structure formation)
↔ diversity vs. regularity 

- Alleviated by baryonic physics (how much?)
- Could point to specific DM properties:

- Self-interactions (SIDM)?
- Ultra-light bosons?
- Superfluid DM?

Where baryonic 
physics matters

The core-cusp 
problem



  

Context (2): Particle Physics

LHC did not find (yet) new physics at TeV:

→ “EW hierarchy pb” strongly affected as a theoretical research program
→ Latest surviving exp. “anomaly” is gµ-2: very fragile (see LQCD results)

=> Popular WIMP no longer a top-down prediction
=> Top-down survivors (gained popularity):

- axions (strong QCD pb)
- sterile neutrinos (leptogenesis)

→ Bottom-up approaches flourish (DM a goal, not a by-product)
=> Game is: production mechanisms in early universe vs. interaction properties
=> Based on more or less complex dark sectors
=> Comprise WIMP-like, FIMP-like, axions-like (ALPs), etc. particles.

→ Many energy scales motivated [e.g. axions, neutrinos, WIMPs, etc.]
=>  Multimessenger + multiwavelength + multitechnique searches.
=> HE astro + astro + cosmo + laboratory probes/signatures Courtesy L. Lellouch

[FNAL’21 + BMW’20]



  

Typical candidates and (PNHE) signatures

Axions
[1µeV – 1 meV]

[← →  for ALPs beyond QCD-axion]

Thermal (non-neutrino) DM
[1 keV – 100 TeV]

WIMPs, FIMPs, asymmetric, etc.

Sterile neutrinos
[1 – 50 keV]

(production from mixing only)

χj SM

χi

Dark
Sector

SM

- axion←→gamma-ray conversion
in B fields

     (e.g. from blazars or CCSN)
e.g. Calore+’20-’21

- photons (MeV-TeVs)
- neutrinos (keV-TeVs)
- matter+antimatter CRs
- secondary radio+X-rays

- X-ray line (1-50 keV)



  

An elephant in the room

arXiv:2007.03565 (PRL)

arXiv:1603.00464 (PRL)

LIGO+VIRGO ‘16



  

An elephant in the room

Many constraints but PBH DM a strong science case.
Relies on non-minimal inflation, but rather generic

Caution: Extended mass function allowed

Currently least 
constrained

arXiv:1603.00464 (PRL)

LIGO+VIRGO ‘16

Carr+’20
(see also Green+’21)



  

Predicting (PNHE) signals

x
DM Particle
Fundamental

Properties

DM phase-space
properties

Astro
“transfer function”Signals = x

- From injection to observer
→ propagation for CRs
→ oscillations for neutrinos
→ e.g. absorption for photons

- DM particle mass
- annihilation/decay cross section
(incl. v-dependencies)
- branching ratios
- spectra of final states

- Spatial distribution of DM
- Inhomogeneities (subhalos)
- Velocity distribution of DM
=> recent developments here



  

Predicting (PNHE) signals

x
DM Particle
Fundamental

Properties

DM phase-space
properties

Astro
“transfer function”Signals = x

- DM particle mass
- annihilation/decay cross section
(incl. v-dependencies)
- branching ratios
- spectra of final states

- Spatial distribution of DM
- Inhomogeneities (subhalos)
- Velocity distribution of DM
=> recent developments here

Active th/pheno dev.
+ AMS02 data to constrain CR 
propagation models + 
multimess. astro backgrounds

Upper limits  (so far) derived by: 
- Exp. collabs when theory settled (e.g. 
gamma-rays through s-wave ann.)
- Th./ph. groups otherwise

Active theoretical dev.
+ Gaia data to constrain 
PSDF and granularity of 
Galactic halo.

- From injection to observer
→ propagation for CRs
→ oscillations for neutrinos
→ e.g. absorption for photons



  

Gamma-ray searches

Armand+’21 (@ICRC-21)

Point your telescopes to Dwarf Galaxy Satellites (DGSs)
(free of other HE processes – only Galactic foreground)



  

Gamma-ray searches

Armand+’21 (@ICRC-21)

Where CTA will improve
(DGS modeling should also improve)

Point your telescopes to Dwarf Galaxy Satellites (DGSs)
(free of other HE processes – only Galactic foreground)



  

X→ Gamma-ray searches

Cirelli+’21

Diffuse Galactic emission
INTEGRAL data (0.02-2 MeV) and |l|<30° |b|<15°



  

Recent developments in gamma-rays

Lacroix+ (in prep)

Relies on:
- Dynamically constrained subhalo population model
- Velocity DF predictions in (sub)halos of all masses
- Many intricate effects … but very strong impact!

Accounting for DM subhalos in v-dependent signals
→ typical of Sommerfeld enhancement ~1/vn

←→ Compton length << interaction length
(similar to gravitational cross section)



  

A word on the GC gamma-ray emission

● Intense extended emission seen in Fermi data

● Template fitting not well suited for physical interpretation: CR properties, propagation, magnetic + 
radiation fields not well controlled.
=> Theoretical uncertainties >> inferred “effective” excess

● Hard astrophysical modeling work (while quite easy DM signal)

● Good candidates: milli-second pulsars + other diffuse component
=> Very likely emission of astrophysical origin
=> GCE OK to derive limit on DM, harder for signals (except gamma-ray lines)

● See e.g. recent work by Calore+’15-’21



  

Antimatter cosmic rays

New benchmark propagation models to bracket 
theoretical uncertainties: MIN-MED-MEX

(old ones by Donato+’04)
=> prediction uncertainties reduced by a factor of ~5

Génolini+’21



  

Antimatter cosmic rays

Reinert & Winkler’17
(Full analysis from Génolini+ expected soon)

Génolini+’21

Strong antiproton 
constraints on DM 
annihilation (s-wave)

New benchmark propagation models to bracket 
theoretical uncertainties: MIN-MED-MEX

(old ones by Donato+’04)
=> prediction uncertainties reduced by a factor of ~5



  

Antimatter cosmic rays in the MeV domain
Old stuff matters!!!

Voyager spacecraft missions (1977)

→ a probe of solar modulation and interstellar CRs

**** For DM: e+e- measurements at ~10 MeV ****

p-wave

→ Very powerful probe of DM annihilation
(bg free + insensitive to DM halo profile, local DM only)

Boudaud+’17-’18

s-wave



  

Neutrinos

Gozzini+@ICRC-21

Pointing to the GC (complementary to gamma-ray searches)Pointing to the Sun (complementary to direct searches)

Lazar+@ICRC-21



  

Primordial black holes

Hektor+’18 (NuSTAR)
(NB: contradicts Gaggero+’17)

Iguaz+’21
(X→ soft gamma-rays)

1-10 Msun PBHs
accrete and heat gas

=> X-rays

(No) limits from X-rays
(gas is turbulent)

Boudaud+’18
(Voyager e+e-)

Light PBHs decay through 
Hawking radiation.

T ~ 1 GeV * (1013g/m)

Lifetime ~ 10 min (m/1010g)3



  

A tiny fraction of PBHs kills s-wave DM annihilation

Lacroix+ (preliminary)
See also Eroschenko’16, Boucenna+’18,Carr+’21, Boudaud+’21



  

Conclusions
● LCDM not secured yet: implication/s for DM nature or properties?

● Structure formation plagued with issues on small scales: baryons? DM properties? (SIDM?)

● DM candidates: axions and rh neutrinos from top-down arguments; WIMPs (and declensions) 
motivated by simple thermal production mechanism/s in early universe.

● Multimessenger astronomy:
● powerful probe/s of thermal DM + heavy decaying DM (sensitivity entering the ballpark)
● sub-GeV and multi-TeV to explore further (MeV astro + CTA)
● v-dependencies of signals + impact of subhalos

● PBHs: elephants in the room:
● Even a tiny fraction of PBH DM kills s-wave annihilating DM
● Strong science case for the coming years (GWs and X-rays).

● DM theory / searches: transdisciplinary approaches necessary
=> Strong French groups + PNHE plays an important role



  

Backup



  

Experimental landscape



  

DM candidates’ mass range

Summary
Thermal DM particles in range ~1 keV - 100 TeV
Non-thermal DM:

> 10-22 eV (bosons)
> 0.1 keV (fermions)

Macro DM: < 10 Msun

Upper mass boundsLower mass bounds

Thermal particle DM (boson/fermion)
~ keV

[Ly-alpha, dwarf galaxies]

Thermal particle DM (boson/fermion)
~ 100 TeV
[Unitarity]

(Non-thermal) Macroscopic DM:
e.g. primordial black holes ~ 1-10 Msun

Fermionic particle DM (single species):
~ 0.1 keV

[Dwarf galaxies as degenerate Fermi gas systems]
[aka Tremaine-Gunn limit]

Bosonic particle DM:
~ 10-22 eV

[de Broglie wavelength ~ size of dwarf galaxies]



  

Core-cusp solution through (self-) interactions

Vogelsberger+16 – ETHOS

Collisional damping vs. WDM vs. SIDM: [e.g. ETHOS – Vogelsberger+’16]
Scattering with light SM species suppresses power spectrum on small scales
→ suppression similar to WDM [Boehm+’01-’15, etc.]
+ self-scattering (SIDM) => density-dependent setting of cores in halos

Typically constrained by Ly-alpha [e.g. Dvorkin+’20]



  

Neff from BBN and CMB

[Assume tuning to 511 keV signal + couplings 
to e’s and nu’s only]

MeV DM can freeze out after ν decoupling

DM dominant coupling to ν’s (s-wave):
→ contributes additional ν’s: Neff

→ increases expansion rate during BBN and 
recombination
→ n/p freezes out earlier ↔ Yp & D/H
→ DM-ν scattering prevents ν’s to free stream

DM dominant coupling to e+e- (p-wave):
→ transfers entropy to visible sector
→ fixed photon density today => decreases Neff

Wilkinson, Boehm+’16



  

CMB Constraints

DM decay:
Slatyer & Wu ‘19

Studied since early 2000’s
[e.g. Finkbeiner+, Slatyer+, Galli+, etc.]

DM annihilation/decay products inject energy that 
contributes ionization at recombination and after.

DM annihilation:
Slatyer ‘16



  

Direct searches

Nucleus

Astrophysical input important:
- local DM abundance + inhomogeneities
- local phase-space distribution of DM
[high tail of v-distribution gives largest 
kinetic energy]
→ Gaia data + theory dev.

DM

Classical WIMP searches:
Scattering off target nuclei
=> nuclear recoils



  

Direct searches

Light WIMP searches:
Short in kinetic energy
=> nuclear excitation/ionization
      (e.g. Ibe+’17, Kouvaris+’17)
=> Scattering off electrons/phonons
=> Electronic recoils/heat
[Intense theoretical effort: Essig+,Lin+,Hochberg+,etc.]

T       meV                                  eV                                    keV

Classical WIMP searches:
Scattering off target nuclei
=> nuclear recoils

Energetics:

Recoil ~ kinetic E ~ mv2

m       keV                                 MeV                                 GeV

electron

DM
Nucleus



  

EDELWEISS+’20 [Ge]
Scattering off electrons
Semiconductors better than noble gas
[lower band gap energy]

Direct searches

Huge theoretical + 
experimental 

activity ongoing

Essig+’16

SENSEI+’20



  

Stars

Bell+’21
Heating of white dwarfs (bw assumptions)

[also Bertone, Fairbairn’08-’10]

Boehm+’21
SN1987A cooling by DM production

[Raffelt+]



  

Gammas & positrons

e-Astrogam proposal
De Angelis, Tatischeff+’18



  

Gammas & positrons

e-Astrogam proposal
De Angelis, Tatischeff+’18

Bartels+’17



  

Gammas & positrons

e-Astrogam proposal
De Angelis, Tatischeff+’18

Bartels+’17

Cirelli+’21 (Integral)



  

Scattering with cosmic rays

Scattering of cosmic rays with DM kicks up the latter to high velocities
=> induced DM cosmic rays (large kinetic energy) [e.g. Bringmann+’18]
=> can be probed at direct detection experiments

Bondarenko+’19



  

Sterile neutrinos from X-rays

Main constraints:

- Matter power spectrum (Ly-
alpha)
- Subhalo/dwarf galaxy counts
- X-ray observations

Dekker+’21
(@ICRC)

e-ROSITA sensitivity

Boyarsky+’19
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