

Benoît Cerutti, IPAG

UNIVERSITÉ

Grenoble Alpes

<u>With the help of</u>: Nicolas Aunai (LPP), Fabien Casse (APC), Mickaël Grech (LULI), Martin Lemoine (IAP), Alexandre Marcowith (LUPM), Illya Plotnikov (IRAP), Rolf Walder (CRAL).

Journées PNHE 2021, 14-16 septembre 2021

Astrophysical relevance & applications

Planetary magnetospheres

Supernova Remnants

Relativistic magnetospheres

Pulsar Wind Nebulae

Gamma-ray bursts Fast radio bursts

Solar corona & wind, heliosphere

Broad non-thermal distributions

Blazars

[http://www.physics.utah.edu/~whanlon/spectrum.html]

Collisionless plasmas

Collisions thermalizes efficiently the particle distribution, **not good for nonthermal** distributions. In most astrophysical environments, plasmas are **very dilute** so that they are effectively "<u>collisionless</u>".

Coulomb collisions **mean free path**: $l_c = \frac{1}{n\sigma_c}$ $V \stackrel{l_c}{\checkmark}$ Frequency of collisions $v = \frac{V}{l_c}$ **Collisionless** plasma if the plasma frequency $\omega_{pe} \gg V$

It also implies that there is a large number of particles per **Debye sphere**:

 $N_D = n \lambda_D^3 \gg 1$

Particles sensitive to **collective plasma phenomena** over binary collisions, particularly important on the **sub-Debye length** and **plasma frequency scales** (plasma frequency and gyroradius).

These microscopic scales are involved in particle acceleration process. **Need to resolve kinetic scales** (\neq MHD approach), and system size $L \gg \lambda_D$

Two numerical approaches to solve Vlasov

$$\frac{\partial f}{\partial t} + \frac{\mathbf{p}}{\gamma m} \cdot \frac{\partial f}{\partial \mathbf{r}} + q \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right) \cdot \frac{\partial f}{\partial \mathbf{p}} = 0$$

Ab-initio model, no approximations

Directly with a Vlasov-code

Treat phase space as a continuum fluid

Advantages:

- **No noise**, good if tail of f is important dynamically (steep power-law).
- No issue if plasma very **inhomogeneous**.
- Weak phenomena can be captured

Limitations:

- Problem (**6+1)D**, hard to fit in the memory, limited resolution.
- Filamentation of the phase space But becoming more competitive, new development to come, stay tuned!

Indirectlty with a PIC code

Sample phase space with particles

Advantages:

- Conceptually **simple**
- Robust and easy to implement.
- Easily **scalable** to large number of cores

Limitations:

- **Shot noise**, difficult to sample uniformly f
- Artificial collisions, requires many particles
- Hard to capture weak/subtle phenomenas
- Load-balancing issues

The spirit of the particle-in-cell approach

Numerical observatory => PIC simulations has become a real <u>discovery tool</u>!

The astrophysical PIC community in France

HE astro application: relativistic shocks

Unmagnetized

See Arno's and Virginia's talks

Magnetized

HE astro application: relativistic shocks

e.g., Plotnikov et al. 2018 Lemoine et al. 2019 Vanthieghem et al. 2020 Cerutti & Giacinti 2020

Shock structure

Particle acceleration

Microturbulence

© Illya Plotnikov

HE astro application: relativistic reconnection

HE astro application: relativistic reconnection

e.g., Cerutti et al. 2013, Melzani et al. 2014

Plasmoid-dominated reconnection

Energy partition ions/electrons

Reconnection rate

HE astro application: relativistic magnetospheres

e.g., Cerutti et al. 2016, Guépin et al. 2020, Crinquand et al. 2020

Spinning black-hole magnetospheres

Spark-gap, pair cascades (GR+QED)

The multi-challenges

Coupling PIC with MHD: Astro exemple 1

SNR shock

Local => PIC

Global => MHD

Coupling PIC with MHD: Astro exemple 2

Reconnection

Beyond the "full" PIC approach: hybrid schemes

Hybrid: Kinetic ions, fluid electrons (code: PHARE with AMR)

See Alexis Marret's talk

Hybrid: MHD+cosmic rays (code: MPI-AMRVAC with AMR)

© Allard Jan Van Marle

The need of the community for the coming decade

- Expertise in Exascale computing, HPC and GPU specialists. What is the good level: National, OSU, laboratory? Difficulty in being attractive and competitive (high-level expertise required but low salary).
- Address multi-scale physics: non-linear feedback between kinetic and the large astrophysical object scales. Numerical stability and convergence at long integration times.
- Develop hybrid numerical approaches (MHD, PIC, Vlasov, radiative transfer, Numerical Relativity). Self-consistent and versatile coupling, AMR.
- Physical processes/effects: pair creation, radiative transfer, GR, neutrinos.
- Pursue the training of students in numerical techniques (e.g., Astrosim school).