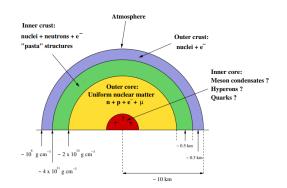
MODELING COMPACT OBJECTS IN THE MULTI-MESSENGER ERA

Micaela Oertel

 ${\tt micaela.oertel@obspm.fr}$

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris/ Université Paris Diderot

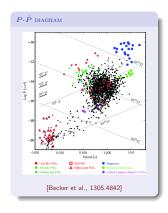

Réunion PNHE, September 14-16, 2021

Introduction

Neutron Stars

- End-products of stellar evolution during core-collapse supernova events
- Complex structure, with density around nuclear saturation density $\rho_0 \simeq 2.7 \times 10^{14} \ \mathrm{g \ cm^{-3}}$

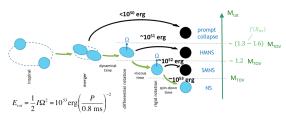
[Image : Isaac Vidaña]


 Macroscopic objects with extreme density → probe strongly interacting matter under extreme conditions
 Interactions? Composition of dense matter? Are there phase transitions?

On the observational side

NEUTRON STARS

- Almost 3000 neutron stars have been observed as pulsars, among others Crab, Vela, Geminga, Hulse-Taylor double pulsar
- Several NS-NS binary systems known
- Accreting neutron stars in binary systems
- Precise masses and spin periods
- Information on magnetic field, radius, surface temperature more difficult since in general model-dependent
- Some recent advances : high mass pulsars with $M\gtrsim 2M_\odot$ (PSR J1614-2230,...), NICER radius measurements



Micaela Oertel (LUTH) NS modeling Réunion PNHE 2021 3/10

On the observational side

BINARY NEUTRON STAR MERGERS

- GW170817 : first detection of a NS-NS merger with LIGO/Virgo detectors
- Information from different phases
 - ▶ Inspiral → masses of objects
 - ▶ Late inspiral \rightarrow tidal deformability $\tilde{\Lambda}$

[Metzger 2019]

 Post merger GW emission not yet detected but in reach for 3rd generation detectors; peak frequency of remnant oscillations strongly correlated with EoS and NS radius

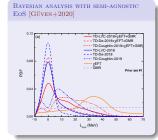
[Bauswein+, Sekiguchi+, Rezzolla+...]

- Electromagnetic counterpart with information about ejecta properties, kilonova, . . .
- GW200105 and GW200115 : first detection of two BH-NS merger events with LIGO/Virgo detectors

FUTURE

- Many other experimental/observational projects underway or planned :
 - Pulsar observations (SKA and precursors) with precise NS mass determinations, moment of inertia, . . .
 - ▶ NS radius determinations from *x*-ray and GW (tidal deformability) detections with high precision from Advanced and 3rd generation detectors
 - ► GW from BNS post-merger phase in reach for 3rd generation detectors
 - Neutrinos from next galactic supernova with efficient detectors (Super/Hyper-Kamiokande, . . .)
- \rightarrow need precise modelisation including numerical simulations and microphysics input (EoS and neutrino interaction rates)!
 - Matter properties covering large domains in density, temperature and electron fraction

	Cold NS	CCSN	BNS merger
Temperature (MeV)	$\lesssim 0.1$	0-100	0-100
Density (fm^{-3})	10^{-14} -1	10^{-14} -5	10^{-14} -5
Electron fraction	eta-eq.	~ 0.01 -0.6	~ 0.01 -0.5

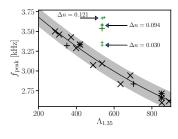


Réunion PNHE 2021

Binary neutron star mergers

Inspiral

- Tidal deformability depends on matter properties [Read+, Faber & Rasio, Hinderer+,...]
 → NS radius and cold EoS
- Much effort to develop (semi-)agnostic
 EoS [Margueron+2018,Carreau+2020,Essick+2021,Capano+2019,...]
- Can be combined with constraints from
 - NS masses $(M_{\rm NS} > 1.97 M_{\odot})$
 - Nuclear masses, experiments for nuclear matter parameters, neutron matter calculations, . . .
 - NS radii (NICER results)


6/10

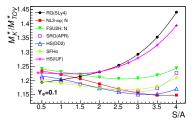
- High precision expected for 3rd generation GW detectors \rightarrow NS radius to 100 m ?
- Importance of unified treatment (homogeneous ↔ clusterised) matter for interpretation in terms of EoS
- Still many uncertainties for central part: non-nucleonic degrees of fying (hyperons, mesons, quarks) might exist

DETECT A PHASE TRANSITION IN BINARY MERGERS?

POST-MERGER PHASE

- Even if NS prior to merger do not contain quark core, the dense merger remnant might [Bauswein+2019, Most+2018, Ecker+2019...]
- Different cases for post-merger :
 - ▶ Very strong phase transition with no stable hybrid NS [Most+2018, Ecker+2019, ...]
 - ightarrow almost immediate collapse to BH at onset of phase transition
 - → almost no identifiable signal

[Bauswein+2019]


- Strong phase transition with stable hybrid NS and considerable quark core in merger remnant [Bauswein+2019]
 - ightarrow Oscillations frequencies show imprint of matter properties
 - → Clear signal of phase transition
- Smooth transition leads to softening of EoS, but not distinguishable from EoS dependence of signal

Micaela Oertel (LUTH) NS modeling Réunion PNHE 2021 7/10

Constraints on TOV mass from GW170817

FINITE TEMPERATURE EFFECTS ON THE EOS

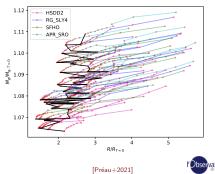
- ullet Idea to extract limits on M^\star_{TOV} from GW170817 : [Rezzolla+2018,Shibata+2019, ...]
 - No prompt collapse for GW170817, but formation of a differentially rotating HMNS
 - ► Internal viscosities lead to rigid rotation, the star collapses upon crossing the stability line for rigid rotation

- \bullet Then apply universal relation between M_K^\star and $M_{\rm TOV}^\star$
- But the merger remnant might still be hot and (partly) out of β-equilibrium upon collapse and universality is lost!
 → considerably relaxed limits

NEW LIMITS FOR TOV MASS [KHADKIKAR+2021]

$$2.15^{+0.10}_{-0.07} M_{\odot} < M_{\rm TOV}^{\star} < 2.24^{+0.12}_{-0.10} M_{\odot}$$

8/10


Proto-neutron star mass and radius

FINITE TEMPERATURE EFFECTS ON THE EOS

 \bullet CCSN simulations indicate that M_{PNS} and R_{PNS} can be measured with GW [Torres-Forne+2019]

- Questions :[Préau+2021]
 - ▶ What can be learned about the cold β -equilibrated EoS?
 - Can we constrain the hot EoS?

- After 1s, R_{PNS} still very different from NS radius
- Difficult to disentangle various EoS
- Uncertainty on entropy profiles dominates

9/10

SUMMARY AND OUTLOOK

SUMMARY

- Understanding the structure of compact stars and dense matter properties needs interplay of modeling and experiments/observations
- Some examples
 - Combination of constrains on the cold NS EoS
 - Possibility of detecting a phase transition from post-merger oscillations
 - Thermal effects in the EoS are important for the interpretation of (GW) data from CCSN/PNS and BNS merger remnants

Outlook

- Very bright future for understanding the structure of compact stars with present and upcoming observations needs precise modeling
- Some examples
 - Interpretation of tidal deformability needs precise crust modeling
 - Neutrino-nucleon interactions and neutrino treatment to determine ejecta composition in CCSN and BNS mergers \rightarrow conditions for nucleosynthesis
 - Better model thermal effects in the EoS
 - Relate HMNS and PNS oscillations to microphysics