





# Stochastic gravitational-wave backgrounds from astrophysical sources

Irina Dvorkin

Institut d'Astrophysique de Paris

Sorbonne Université

Journées PNHE, 14 September 2021

#### Intro: Stochastic gravitational-wave backgrounds

- **Cosmological**: intrinsically stochastic signal
  - **\*** Inflation
  - **\*** First order phase transitions
  - Cosmic strings
- **\*** Astrophysical: incoherent superposition of unresolved sources
  - \* Individual sources too faint
  - \* Individual sources overlap in time (confusion noise)



#### **Current upper limits: LIGO/Virgo 01+02+03**

# [LVK 2021]

Power-law background:

$$\Omega_{\rm GW}(f) = \Omega_{\rm ref} \left(\frac{f}{f_{\rm ref}}\right)^{\alpha}$$



 $\log_{10}\Omega_{\mathrm{ref}}$ 



0

-5

 $\mathbf{5}$ 

10

Energy density of the stochastic background:

$$\Omega_{\rm GW}(f;\theta_k) = \frac{f}{\rho_c H_0} \int_0^{z_{\rm max}} dz \frac{R_m(z;\theta_k) \frac{dE_{\rm GW}}{df}(f_s;\theta_k)}{(1+z)E(\Omega_M,\Omega_\Lambda,z)}$$

Probe of high-redshift source population



Energy density of the stochastic background:

$$\Omega_{\rm GW}(f;\theta_k) = \frac{f}{\rho_c H_0} \int_0^{z_{\rm max}} dz \frac{R_m(z;\theta_k) \frac{dE_{\rm GW}}{df}(f_s;\theta_k)}{(1+z)E(\Omega_M,\Omega_\Lambda,z)}$$

Probe of high-redshift source population





Non-detection of stochastic
 background constrains high-z merger
 rate

See [Callister+2020]

- Black hole mass depends on metallicity of progenitor star
  - High metallicity -> strong winds -> low BH mass
  - Metallicity evolves with time





- Metallicity evolves with time
  - Galactic mass-metallicity relation





cosmic time [Gyr]

### **Intermediate frequencies: stellar-mass binaries**

[LVC, GWTC-2 implications]

• O3a catalogue: evidence for BHs in the PISN mass gap (GW190521:  $85M_{\odot} + 66M_{\odot}$ )



#### **Intermediate frequencies: stellar-mass binaries**

[LVC, GWTC-2 implications]

- O3a catalogue: evidence for BHs in the PISN mass gap
- One of the possible explanations: PopIII remnants (metal-free)

[e.g. Kinugawa+2014; Hartwig+2016; Belczynski+2017; Liu&Bromm+2021...]



#### **Intermediate frequencies: stellar-mass binaries**

[LVC, GWTC-2 implications]

- O3a catalogue: evidence for BHs in the PISN mass gap
- One of the possible explanations: PopIII remnants (metal-free)

[e.g. Kinugawa+2014; Hartwig+2016; Belczynski+2017; Liu&Bromm+2021...]





#### Intermediate frequencies: stellar-mass bina

- O3a catalogue: evidence for BHs in the PISN mass gap
- One of the possible explanations: PopIII remnants (metal-free)
- Contribution to background at low frequencies





Intermediate frequencies: stochastic backgrounds from stellar-mass binaries

Stochastic background from stellar-mass binary black holes: foreground for cosmological signals!

[**ID+**2016; Cusin, **ID**+2019, Perigois+2021,...]

Will need to separate astrophysical and cosmological backgrounds



[Biscoveanu+2020; Karnesis+2021; Boileau+2021]

#### **Intermediate frequencies: confusion noise**

## **Galactic binaries**

- 10<sup>8</sup> double white dwarfs in Milky Way
- Monochromatic sources in LISA band
- Confusion noise dominates instrument noise in the mHz band



## Intermediate frequencies: confusion noise

# **Galactic binaries**

- 10<sup>8</sup> double white dwarfs in Milky Way
- Monochromatic sources in LISA band
- Confusion noise dominates instrument noise in the mHz band

# **Extreme mass-ratio inspirals**

- Stellar-mass black holes orbiting massive black holes
- Expected to form in dense galactic centers
- LISA detection rates:  $1 10^4 yr^{-1}$

[Babak+2017]



 Massive BH binaries: primary targets for LISA

$$M_{BH}\sim 10^5-10^9 M_\odot$$

[e.g. Barausse 2012; Sesana+2014; Klein+2016; Dayal+2019; Bonetti+2019; Katz+2019; ...]



# \* Key processes still unknown:

- \* Seeds of massive black holes
- Co-evolution with host galaxies
- \* Interactions with surrounding gas and stars

- Detection rates: 4-6 per
  year in the most
  'pessimistic' case
- High-mass seed models
  not affected by SN
  feedback
- SN feedback decreases
  the merger rate in lowmass galaxies
- kpc-scale wandering
  decreases the merger rate
  in high-mass galaxies



M<sub>tot</sub> [M<sub>sun</sub>]

#### [Barausse, ID, Tremmel, Volonteri, Bonetti 2020]

- Detection rates: 4-6 per
  year in the most
  'pessimistic' case
- High-mass seed models
  not affected by SN
  feedback
- SN feedback decreases
  the merger rate in lowmass galaxies
- kpc-scale wandering
  decreases the merger rate
  in high-mass galaxies

#### [Barausse, ID, Tremmel, Volonteri, Bonetti 2020]



#### Low frequencies: super-massive black hole binaries

 Super-massive binaries create a stochastic background in the nHz band which is less sensitive to differences between the models

[e.g. Bonetti+2017; Kelly+2017; **ID** & Barausse 2017; Sesana+2018; Chen+2019 ...]





[Barausse, ID, Tremmel, Volonteri, Bonetti 2020]

#### Low frequency: Pulsar Timing Arrays



- Tentative detection of a correlated signal by the NANOGrav PTA [see Goncharov+2021 for Parkes analysis]
- Evidence for a common-spectrum
  process, but not the correlation expected
  from a GW signal
- Consistent with signal from black hole binaries
- Consistent with cosmological signals (primordial black holes, cosmic strings...)

[e.g. De Luca+2021; Vaskonen&Veermäe 2021; Ellis&Lewicki 2021; Blasi+2021; Nakai+2021; Ratzinger&Schwaller 2021; Addazi+2020]

- Variety of astrophysical backgrounds across different frequencies
- Highly complementary to individual detections (explore high redshifts)
- Expect a detection soon?...
  - Tightening upper limits from LIGO/Virgo/Kagra
  - Tentative detection of a common process by Pulsar Timing Arrays
- Future: LISA, 3G detectors...



FIG. 1: Whether noise is a nuisance or a signal may depend on whom you ask. (Cartoon by Rand Kruback. Used with permission of Agilent Technologies.)