DIRAC2 2009 Testbeam Preliminary Results

R. Gaglione

Laboratoire d'Annecy-le-Vieux de Physique des Particules, Université de Savoie, CNRS/IN2P3 FRANCE

November 17th, 2009

PRELIMINARY ANALYSIS RESULTS

Introduction Analysis

Framework

PRELIMINARY FAILURE REPORT

Introduction

Measurements

Conclusions

PRELIMINARY ANALYSIS RESULTS

Introductio Analysis Framework

PRELIMINARY FAILURE REPORT

Introduction
Measurements
Conclusions

PRELIMINARY ANALYSIS RESULTS

Introduction

Analysis Framework

PRELIMINARY FAILURE REPORT

Introduction
Measurements
Conclusions

Introduction

Testbeam setup summary:

- 4 8×8 cm² DIRAC2 chambers (blue table);
- 3 PMTs, with ≈ 8×6 cm² coinc → 3500 triggers/spill (red table);
- Labview acquisition software → 450 triggers/spill;
- Framework for quick analysis;


Events sequence

- 30 oct: installation, firsts data! (this part)
- 31 oct: same setup, no more data... (see second part)
- 2 oct: only one chamber repaired, lot of interresting data to be analysed...

Data

30 oct: the configuration of the chip is "LAPP defaults"! No optimisation at all!

- 2 files: acq_30102009_2102_1.root and acq_30102009_2107_1.root
 → 37450 events;
- more or less the same setup (lowest threshold has been reduced in one chamber);

PRELIMINARY ANALYSIS RESULTS

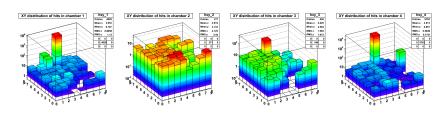
Introduction

Analysis

Framework

PRELIMINARY FAILURE REPORT

Introduction Measurements

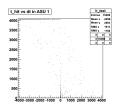

Conclusions

Setup

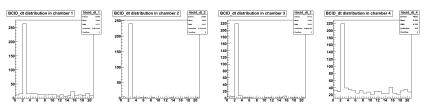
Channels 11 and 57 are masked in hardware (unable to trig) for all boards.

${\sf Chamber} \#$	1	2	3	4
DIF#	7	19	17	4
low thr	7	14	14/13	7

Cut on dt>10:

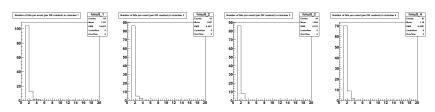


Noise Analysis

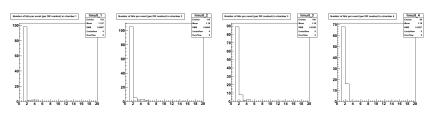

- Channels 11 and 57 are removed in analysis (maybe not necessary !);
- Remove bcid_hit=4095;
- Remove channel 32 on chamber 2 and 3;
- Cut on dt=2;

Data quality

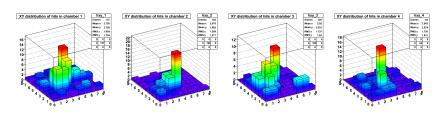
t_hit versus dt:


Only with cut bcid_hit≠4095:

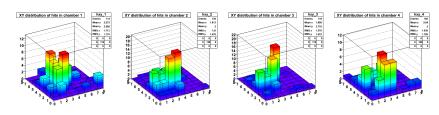
Very clean as it is!


Multiplicity

Run 31102009_2102:


Multiplicity

Run 31102009_2107:


Profile

Run 31102009_2102:

Profile

Run 31102009_2107:

Efficiency

TO BE DONE!

PRELIMINARY ANALYSIS RESULTS

Introduction Analysis Framework

PRELIMINARY FAILURE REPORT

Introduction
Measurements

Improvement needed on framework

Very useful tool, but:

- 1 event = 1 readout of all channel of all DIFs will be nice;)
- sort event versus abs bcid will be nice too (Jean is working on);
- Wrong bcid abs (Laurent is working on);
- Still some error message on reconstruction;
- Question: on "bad" event, is the whole physical event skipped or just current DIF readout?

PRELIMINARY ANALYSIS RESULTS

Introducti Analysis Framewor

PRELIMINARY FAILURE REPORT

Introduction
Measurements
Conclusions

PRELIMINARY ANALYSIS RESULTS

Introducti Analysis Framewor

PRELIMINARY FAILURE REPORT

Introduction

Measurements

Conclusions

History

- 30 oct: first data to check beam and trigger quality with DIRAC stack "out of the box";
- 31 oct: unable to see coincidence on the 4 chambers, very low efficiency;
- 1 nov: electronic check: wrong DC point at the input of the chamber 4 and 3... all chambers are damaged!
- 2 nov: one chip has been exchanged with the only one spare;
- 5 nov: beam profile versus time, input voltage measurements.

PRELIMINARY ANALYSIS RESULTS

Introducti Analysis

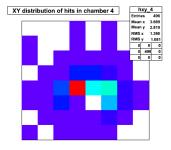
PRELIMINARY FAILURE REPORT

Introduction

Measurements

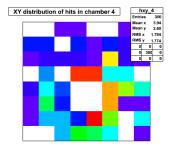
Conclusions

DC input voltages

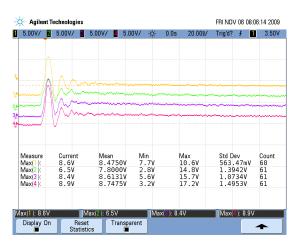

The inputs of the chip must be at 580+/-15 mV, and we got a large spread from few mV to 3.5 V.

→ New calibration of this board to check each channel:

Need to check other boards to verify the pattern.


Beam profile

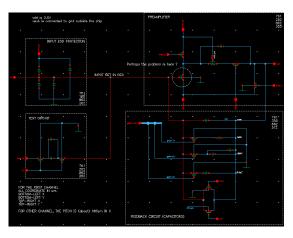
Run 02112009_1717:


Beam profile

Run 02112009_1802:

Voltage monitoring

The maximum voltage for AMS C35B4 is 5.5~V and the gate oxyde breakdown voltage is 8~V...


From visual inspection...

With a $800 \times$ magnification: nothing to see. . .

... to SEM inspection!

SERMA technologies will inspect the input net of the chip to check for defects in polysilicon/metalizations.

The result is expected in about 2 weeks.

PRELIMINARY ANALYSIS RESULTS

Introduction Analysis Framework

PRELIMINARY FAILURE REPORT

Introduction Measurements

Conclusions

Conclusion

Good point: DIRAC stack has been working "as it is" without any optimisations (very good work of all the team BEFORE test beam);

To do now:

- · Repair the stack for cosmics;
- Prepare new chambers with stronger protections;
- Protection testboard!
- Diodes engineering.