Correlation functions and wave functions in solvable models 13–16 September 2021, Paris

Finite volume form factors

Zoltán Bajnok

Wigner Research Centre for Physics

In collaboration with: J. Balog, R. Janik, M. Lájer, F. Smirnov, B. Szépfalvi, I. Vona, Ch. Wu

based on <u>1707.08027</u>, <u>1802.04021</u>, <u>1903.06990</u>, <u>1904.00492</u>, <u>1911.08525</u>

Ongoing work in collaboration with I. Szécsényi, G. Benas, I. Vona

- Motivation: why finite volume form factors, AdS/CFT 3pt functions
- Finite volume corrections

Small volume

Energy spectrum	Exact description, Thermodynamic Bethe Ansatz	Lüscher correction of masses	Momentum quantisation, Bethe Yang equation	Masses, scatte
Form Factors Correlators	Linear integral equations based on the TBA	Leading exponential volume corrections	Change in the normalisation of states	Form factor

Motivation

[Beisert et al 2012]

AdS/CFT
Maximally supersymmetric
4D SU(N) gauge theory

$$\frac{2}{g_{YM}^2} \int d^4x \operatorname{Tr} \left[-\frac{1}{4} F^2 - \frac{1}{2} (D\Phi)^2 + i\overline{\Psi} \overline{\Psi} \Psi$$
1 gauge boson, 8 fermion $V(\Phi, \Psi) = \frac{1}{4} [\Phi, \Phi]^2 + \overline{\Psi}$
 $\langle \mathcal{O}_i(x) \mathcal{O}_j(0) \rangle = \frac{\delta_{ij}}{x^{2\Delta(\lambda)}}$
 $\mathcal{O} = \operatorname{Tr}(Z^J)$
 $\mathcal{I} = \Phi_1 + i\Phi$
 $X = \Phi_3 + i\Phi$
Integrable spin chain
 $\chi = g_{YM}^2$
 $k = g_{YM}^2$
 $k = g_{YM}^2$

Triality

 $e^{ipJ}S(p,-p)=1$ $E(J) = 2E(p) + \delta E(p)$ $\delta E(p) = \int dq S(q, p) S(q, -p) e^{-\epsilon(q)}$

2pt functions spin chain spectrum

 $\mathcal{O} = \operatorname{Tr}(Z^{J-M}X^M)$

3pt functions spin chain overlaps

 $\langle \mathcal{O}_i \mathcal{O}_j \mathcal{O}_k \rangle = C_{ijk}(\lambda)$

Finite volume formfactor of a nonlocal operators [Bajnok, Janik 2015]

Finite volume form factor from hexagons

one cut: nonlocal form factor

two cuts: octagon form factor

Three cuts: hexagon form factor

Gluing and wrapping: insert a complete system of mirror basis, but kinematical singularities!

- Motivation: why finite volume form factors, AdS/CFT 3pt functions
- Finite volume corrections

Small volume

Energy spectrum	Exact description, Thermodynamic Bethe Ansatz	Lüscher correction of masses	Momentum quantisation, Bethe Yang equation	Masses, scatte
Form Factors Correlators	Linear integral equations based on the TBA	Leading exponential volume corrections	Change in the normalisation of states	Form factor

S-matrix bootstrap **Description at infinite volume**

1+1dimensional scalar theory

Scattering matrix from Decompactification

LSZ reduction formula

Perturbative results

Analytical properties

[Zamolochikovs1979]

Sinh-Gordon theory

$$\mathscr{L} = \frac{1}{2} (\partial_t \varphi)^2 - \frac{1}{2} (\partial_x \varphi)^2 - V(\varphi) \qquad V(\varphi) = \frac{m^2}{b^2} \left(\cosh b\varphi - \frac{m^2}{b^2}\right)^2 + \frac{1}{2} \left(\cosh b\varphi - \frac{$$

$$\mathcal{D}_{j} = i \int d^{2}x_{j}e^{ip_{j}x - i\omega_{j}t} \left\{ \partial_{t}^{2} - \partial_{x}^{2} + \text{Relativistic invariance} \right. \\ p = m \sin \theta = m \sin \theta = m \sin \theta = 0$$

$$\frac{\partial_{2}\mathcal{D}_{1}\mathcal{D}_{2}\langle 0 | T(\mathcal{O}\varphi(1)\varphi(2)\varphi(3)\varphi(4)) | 0 \rangle = S(\theta_{1} \text{ for } \mathcal{O} = \mathbb{I} \text{ for }$$

$$\theta_2 \quad \theta_1 - i\pi \qquad S(\theta) = \frac{\sin \pi \theta - i \sin \pi \alpha}{\sinh \theta + i \sin \pi \alpha}$$

Form factor solutions

minimal solutions $f(\theta_1, \theta_2) = \langle 0 | \mathcal{O} | \theta_1, \theta_2 \rangle =$

Generic solution

$$\langle 0 \mid \mathcal{O} \mid \theta_1, \dots, \theta_n \rangle = H_n \prod_{i < j} \frac{f(\theta_i - \theta_j)}{e^{\theta_i} + e^{\theta_j}} Q^{\mathcal{O}}(e^{\theta_1}, \dots, e^{\theta_n})$$
 [Fring et al 1992]

Diagonal limit

$$\langle \theta \,|\, \mathcal{O} \,|\, \theta_1, \dots, \theta_n \rangle = \sum_k \delta(\theta - \theta_k) \prod_{i=1}^k S(\theta_i - \theta_k) \rangle \langle 0 \,|\, \mathcal{O} \,|\, \theta_1, \dots, \hat{\theta}_k, \dots, \theta_n \rangle + \langle 0 \,|\, \mathcal{O} \,|\, \theta + i\pi - i\epsilon, \theta_1, \dots, \theta_n \rangle$$

Connected form factor

 $\langle \theta_1 + \epsilon_1, \dots, \theta_n + \epsilon_n | \mathcal{O} | \theta_n, \dots, \theta_1 \rangle = \text{function of } \epsilon_i / \epsilon_j + F_c(\theta_1, \dots, \theta_n) + O(\epsilon)$

$$= e^{(D+D^{-1})^{-1}\log S} \qquad Df(\theta) = f(\theta + i\pi)$$

- Motivation: why finite volume form factors, AdS/CFT 3pt functions
- Finite volume corrections

Small volume

Energy spectrum	Exact description, Thermodynamic Bethe Ansatz	Lüscher correction of masses	Momentum quantisation, Bethe Yang equation	Masses, scatte
Form Factors Correlators	Linear integral equations based on the TBA	Leading exponential volume corrections	Change in the normalisation of states	Form factor

Large volume spectrum **Bethe Yang equations**

$$e^{imL\sinh\theta_j} \prod_k S(\theta_j - \theta_k) = 1$$

$$\Phi_j = mL\sinh\theta_j - i\sum_{k:k\neq j} \log S(\theta_j - \theta_k) = 2\pi n_j$$

Finite volume state $|\theta_1, \dots, \theta_N\rangle_L \equiv |n_1, \dots, n_N\rangle_L$ Total energy

$$E(\{\theta\}) = \sum_{k} m \cosh \theta_{k}$$

Large volume form factors **Polynomial correction**

Crossing for form factors

$$\langle \theta | \mathcal{O} | \theta_1, ..., \theta_n \rangle = \sum_k \delta(\theta - \theta_k) \langle 0 | \mathcal{O} | \theta_1, ..., \hat{\theta}_k, ..., \theta_n \rangle + \langle 0 | \mathcal{O} | \theta + i\pi - i\epsilon, \theta_1, ..., \theta_n \rangle$$
Normalization of finite volume states

$$\langle n_i | n_k \rangle = \delta_{i,k}$$
identity

$$1 + \sum_n |n\rangle \langle n| + ... = 1 + \int d\theta | \theta \rangle \langle \theta | + ...$$

$$\rho = \det[\partial \Phi_i / \partial \theta_j]$$
Nondiagonal form factors

$$\langle 0 | \mathcal{O} | \theta_1, ..., \theta_n \rangle_L = \frac{\langle 0 | \mathcal{O} | \theta_1, ..., \theta_n \rangle}{\sqrt{\rho(\theta_1, ..., \theta_n)}}$$
[Pozsgay, Takács 2]
Diagonal form factors

$$\langle \theta_n, ..., \theta_1 | \mathcal{O} | \theta_1, ..., \theta_n \rangle_L = \frac{\sum_{\alpha \cup \bar{\alpha} = \{1, ..., n\}} \rho(\bar{\alpha}) F_c^{\mathcal{O}}(\alpha)}{\rho(\theta_1, ..., \theta_n)}$$

normalisation of infinite volume states
$$\langle \theta \rangle$$

 $\delta(\theta - \theta_k) \rangle \langle 0 | \mathcal{O} | \theta_1, ..., \hat{\theta}_k, ..., \theta_n \rangle + \langle 0 | \mathcal{O} | \theta + i\pi - i\epsilon, \theta_1, ..., \theta_n \rangle$
states $\langle n_i | n_k \rangle = \delta_{i,k}$
 $\langle n | + ... = 1 + \int d\theta | \theta \rangle \langle \theta | + ...$
 $\langle 0 | \mathcal{O} | \theta_1, ..., \theta_n \rangle_L = \frac{\langle 0 | \mathcal{O} | \theta_1, ..., \theta_n \rangle}{\sqrt{\rho(\theta_1, ..., \theta_n)}}$ [Pozsgay, Takács 2
 $\langle \theta_n, ..., \theta_1 | \mathcal{O} | \theta_1, ..., \theta_n \rangle_L = \frac{\sum_{\alpha \cup \bar{\alpha} = \{1, ..., n\}} \rho(\bar{\alpha}) F_c^{\mathcal{O}}(\alpha)}{\rho(\theta_1, ..., \theta_n)}$

[Saleur 2000] [Pozsgay, Takács 2008] [Bajnok, Wu 2017]

- Motivation: why finite volume form factors, AdS/CFT 3pt functions
- Finite volume corrections

Small volume

Energy spectrum	Exact description, Thermodynamic Bethe Ansatz	Lüscher correction of masses	Momentum quantisation, Bethe Yang equation	Masses, scatte
Form Factors Correlators	Linear integral equations based on the TBA	Leading exponential volume corrections	Change in the normalisation of states	Form factor

Virtual particle's contribution

$$E_n(L) = \sum_k m \cosh \theta_k - m \int \frac{d\theta}{2\pi} \cosh \theta$$

Exponential corrections: diagonal form factors

Virtual particle's contribution

Exponential corrections: non-diagonal case [Bajnok et al 2018]

Ten

$$\begin{array}{c} \text{Main problem} & \text{Two point} \\ \text{function} & \frac{1}{L} \int_{-L/2}^{L/2} dx \int_{-\infty}^{\infty} dt \, e^{i(\omega t + qx)} \langle \mathcal{O}(x, t) \mathcal{O} \rangle_{L} = \\ & \sum_{N} |\langle 0| \mathcal{O} | \theta_{1}, ..., \theta_{N} \rangle_{L}|^{2} \left\{ \frac{\delta_{q-P_{N}(L)}}{E_{N}(L) - i\omega} + \frac{\delta_{q+P_{N}(L)}}{E_{N}(L) + i\omega} \right\} \\ & \text{Finite volume LSZ} \lim_{\omega \to iE_{N}(L)} (E_{N}(L) + i\omega) \Gamma(\omega, P_{N}(L)) = |\langle 0| \mathcal{O} | \theta_{1}, ..., \theta_{N} \rangle_{L}|^{2} \\ \text{mperature channel and continue} & \omega \to iE_{N}(L) \\ Z\Gamma(\omega, q) = \frac{2\pi}{L} \sum_{\mu,\nu} |\langle \nu | \mathcal{O} | \mu \rangle|^{2} e^{-E_{r}L} \delta(P_{\mu} - P_{\nu} + \omega) \left\{ \frac{1}{E_{\mu} - E_{\nu} - iq} + \frac{1}{E_{\mu} - E_{\nu} + iq} \right\} \\ \text{mergy corrections are correctly obtained} \\ F_{1} = \langle 0| \mathcal{O} | \theta \rangle \\ \text{precisions} & \langle 0| \mathcal{O} | \theta_{1} \rangle_{L} = \sqrt{2\pi} / \sqrt{\rho_{1}^{(1)}} (F_{1} + \int_{-\infty}^{\infty} d\theta F_{3}^{\text{reg}}(\theta + i\pi, \theta, \theta_{1} - i\frac{\pi}{2}) e^{-mL \cosh \theta} + ...) \\ F_{3}^{\text{reg}}(\theta, \theta_{1}, \theta_{2}) = \langle 0| \mathcal{O} | \theta, \theta_{1}, \theta_{2} \rangle - \frac{iF_{1}}{\theta - \theta_{1} - i\pi} [1 - S(\theta_{1} - \theta_{2})] + i\frac{F_{1}}{2} S'(\theta_{1} - \theta_{2}) \end{array}$$

Er

F СС

> $\theta - \theta_1 - i\pi^{-1}$ 3 (0,01,02)

- Motivation: why finite volume form factors, AdS/CFT 3pt functions
- Finite volume corrections

Small volume

Energy spectrum	Exact description, Thermodynamic Bethe Ansatz	Lüscher correction of masses	Momentum quantisation, Bethe Yang equation	Masses, scatte
Form Factors Correlators	Linear integral equations based on the TBA	Leading exponential volume corrections	Change in the normalisation of states	Form factor

Saddle point equation

$$\epsilon(\theta) = mL \cosh \theta + \sum_{k} \log S(\theta - \theta_{k} - i\pi/2)$$
$$E_{n}(L) = \sum_{k} m \cosh \theta_{k} - m \int \frac{d\theta}{2\pi} \cosh \theta \log(\theta)$$

Calculate the dominant finite density state

[Zamolodchikov 1990]

- 2) $-\int \frac{d\theta}{2\pi} K(\theta \theta') \log(1 + e^{-\epsilon(\theta')})$ [Dorey et al 1996]
- $(1 + e^{-\epsilon(\theta)})$ $-i\epsilon(\theta_k + i\pi/2) = \Phi_k = \pi(2n_k + 1)$

Exact finite volume description: diagonal case

Expectation values in a highly excited Bethe state

_eClair-Mussardo and generalisation

$$\mathscr{D}_{c}^{\mathscr{O}}(\alpha) = \sum_{n} \frac{1}{n!} \prod_{j=1}^{n} \int \frac{d\theta_{i}}{2\pi}$$

Exact finite volume description: non-diagonal case

Work in progress

Expected answer

$$\langle 0 | \mathcal{O} | \theta \rangle_L = \sum_n \frac{1}{n!} \prod_{j=1}^n \int \frac{d\theta_i}{2\pi} f(\theta_j) d\theta_j$$

 $f(\theta_j)F_c^{(0)}(\theta + i\pi/2, \theta_1, \dots, \theta_n)$

Excited state LM for bilocal operators

 $R \rightarrow \infty$

Lowest state survives

 $\langle \theta_n, \ldots, \theta_1 | \mathcal{O}(x, t) \mathcal{O}(x, t) \rangle$

 $\mathcal{D}_{c}^{\mathcal{O}(x,t)\mathcal{O}}(\alpha) = \sum_{n=1}^{\infty} \frac{1}{n!} \prod_{n=1}^{n} \prod$

 $\langle \theta_1, \dots, \theta_n | \mathcal{O}(0, i\tau) | 0 \rangle \langle$

$$\langle \theta_1, \dots, \theta_n | \mathcal{O}(x, t) \mathcal{O}(0, 0) | \theta_n, \dots, \theta_1 \rangle_L e^{-E_n(L)R}$$

$$\widehat{\mathcal{O}}(0, 0) | \theta_1, \dots, \theta_n \rangle_L = \frac{\sum_{\alpha \cup \bar{\alpha} = \{1, \dots, n\}} \rho(\bar{\alpha}) \mathcal{D}_c^{\mathcal{O}(x, t)}}{\rho(\theta_1, \dots, \theta_n)}$$

$$-\prod_{\alpha} \left[\frac{d\theta_i}{d\theta_i} - \frac{e^{-\epsilon(\theta_j)}}{e^{-\epsilon(\theta_j)}} F^{\mathcal{O}(x, t)} \mathcal{O}(\alpha + i\pi/2, \theta_1 - \theta_1) \right]$$

$$! \prod_{j=1} J 2\pi 1 + e^{-\epsilon(\theta_j) c}$$
[Pozsgay, Szécsényi 2018]

$$\langle 0 | \rangle \mathcal{O} | \theta_n, \dots, \theta_1 \rangle_L e^{-\tau (E_n(L) - E_0(L))} + \dots$$

Exact finite volume expectation values of special operators

Conserved charge $\partial_x j(x,t) + \partial_t q(x,t) = 0$

$$F_c^q(\theta_1, \dots, \theta_n) = m \cosh \theta_1 K$$

$$\langle \theta_1, \dots, \theta_n | Lq(0,0) | \theta_n, \dots, \theta_n \rangle_L = \sum_k q(\theta_k) + \int \frac{d\theta}{2\pi} q(\theta) \log(1 + e^{-\epsilon(\theta)})$$

Conserved current

$$F_c^j(\theta_1, \dots, \theta_n) = m \sinh \theta_n$$

$$\langle \theta_1, \dots, \theta_n | j | \theta_n, \dots, \theta_n \rangle_L = \sum_{m,k} (m \cosh \theta_m)^{dr} (\partial \Phi)^{-1}_{mk} q(\theta_k)^{dr} + m \cosh \theta \circ q(\theta)^{dr}$$
[Baj

Dressing

 $f(\theta)^{dr} = f(\theta) + K(\theta - \theta') \circ f(\theta')^{dr}$

$$Q = \int_0^L dx q(x, t) \qquad \qquad Q | \theta \rangle = q(\theta) | \theta \rangle$$

 $K(\theta_1 - \theta_2) \dots K(\theta_{n-1} - \theta_n)q(\theta_n) + \text{permutations}$

 $\theta_1 K(\theta_1 - \theta_2) \dots K(\theta_{n-1} - \theta_n) q(\theta_n) + \text{permutations}$

inok, Vona 2019] [Borsi et al 2019]

$$f(\theta) \circ g(\theta) = \int \frac{d\theta}{2\pi} \frac{f(\theta)g(\theta)}{1 + e^{\epsilon(\theta)}}$$

Exact finite volume expectation values in the sinh-Gordon theory

C

Conserved current with a new convolution
$$\langle \theta_1, ..., \theta_n | j | \theta_n, ..., \theta_n \rangle_L = (m \cosh \theta)^{dr} \cdot q(\theta)$$

$$f(\theta) \cdot g(\theta) = \sum_j \frac{if(\theta_j + i\pi/2)g(\theta_j + i\pi/2)}{\epsilon'(\theta_j + i\pi/2)} + \int \frac{d\theta}{2\pi} \frac{f(\theta)g(\theta)}{1 + e^{\epsilon(\theta)}}$$
Exponential operators $\mathcal{O}_{\alpha} = e^{\alpha(b+b^{-1})/2\phi(0,0)}$ [Negro, Smirnov 2013]

Fermionic structure

$$\{\beta_m, \beta_n^*\} = \{\bar{\gamma}_m, \bar{\gamma}_n^*\} = -\delta_{n,m} t_n(\alpha) \qquad 1/t_n(\alpha) = 2\sin(\pi(\alpha - m))$$

$$\frac{\langle \theta_1, \dots, \theta_n | \beta_1^* \bar{\gamma}_1^* \Phi_\alpha | \theta_n, \dots, \theta_n \rangle_L}{\langle \theta_1, \dots, \theta_n | \Phi_\alpha | \theta_n, \dots, \theta_n \rangle_L} =$$

$$\omega_{n,m} = e_n \bullet (1 + K_\alpha + K_\alpha \bullet K_\alpha + \dots) \bullet e_m$$

Checked in the UV (Liouville 3pt functions) and IR (generalised LM)

 $\beta_1^* \bar{\gamma}_1^* \Phi_\alpha \propto \Phi_{\alpha-2a}$ $\omega_{1,1} - t_n(\alpha)$

$$e_n(\theta) = e^{n\theta}$$
 $K_{\alpha}(\theta) = \frac{ie^{i\alpha}}{\sinh(\theta + i\pi a)} - \frac{ie^{-i\alpha}}{\sinh(\theta - i\theta)}$

[Bajnok, Smirnov 2019]

Summary **Overview of last 5 years work**

- Motivation: why finite volume form factors, AdS/CFT 3pt functions
- Finite volume corrections

Small volume

Energy spectrum	Exact description, Thermodynamic Bethe Ansatz	Lüscher correction of multiparticle energies	Momentum quantisation, Bethe Yang equation	Masses, scatte
Diagonal Form Factors	Linear integral equations based on the TBA	Leading exponential volume corrections	Sum for partitions, partial densities	Connected form
Non-diagonal form factors	Still missing	Leading exponential volume corrections	Change in the normalisation of states	Form factor

