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Based on

The One-Loop Spectral Problem of Strongly Twisted N = 4 Super
Yang-Mills Theory by Ipsen, Staudacher, Zippelius [1812.08794]

The Integrable (Hyper)eclectic Spin Chain by Ahn, Staudacher
[2010.14515]

Work in progress by Ahn, Corcoran, Staudacher [2110.soon]
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Motivation

Strongly twisted planar N = 4 super Yang-Mills is a non-unitary toy
model which retains integrability.

One-loop dilatation operator D is one of the simplest settings to
understand integrability.

In certain operator sectors D in non-diagonalisable, which leads to
logarithms in correlation functions determined by Jordan block
structures.

Bethe ansatz fails to describe the sizes and multiplicities of these
Jordan blocks. What can be done?
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Strongly Twisted N = 4 SYM

Start from γ-deformed N = 4 SYM LSYM(A,Ψ,Φ,g ,Nc , γ1, γ2, γ3) and
take the limit [Gürdogan, Kazakov ’15]

g =
√
λ

4π
→ 0, qj = e−iγj/2 →∞ or 0,

where either gqj ≡ ξ+j or gq−1
j ≡ ξ−j are held fixed.

There are 23 = 8 possible limits. For (q1,q2,q3) = (∞,∞,∞) we have

Lint = Nctr ((ξ+1 )2φ†
2φ

†
3φ2φ3 + (ξ+2 )2φ†

3φ
†
1φ3φ1 + (ξ+3 )2φ†

1φ
†
2φ1φ2)

+Nctr (i
√
ξ+2 ξ

+

3 (ψ
3φ1ψ

2 + ψ̄3φ
†
1ψ̄2) + cyclic) .

Overall the 8 limits give 2 inequivalent models (6+2).
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Electic Spin Chain
Consider local composite operators of length L built from φi

Oj1,j2,...,jL(x) = tr(φj1φj2 . . . φjL(x)).

The dilatation operator reads [Ahn, Staudacher ’20]

D =D0 + g2Hec +O(g4).

For (q1,q2,q3) = (∞,∞,∞) we have

Hec =
L

∑
i=1

Hi ,i+1
ec , Hec ∶ (C3)⊗L → (C3)⊗L,

where
Hec ∣11⟩ = 0, Hec ∣22⟩ = 0, Hec ∣33⟩ = 0,

Hec ∣12⟩ = 0, Hec ∣23⟩ = 0, Hec ∣31⟩ = 0,

Hec ∣21⟩ = ξ+3 ∣12⟩ , Hec ∣32⟩ = ξ+1 ∣23⟩ , Hec ∣13⟩ = ξ+2 ∣31⟩ .
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Hypereclectic Spin Chain

For ξ+1 = ξ+2 = 0, ξ+3 = 1 we get the hypereclectic spin chain:

Hhec =
L

∑
i=1

Hi ,i+1
hec ,

where
Hhec ∣11⟩ = 0, Hhec ∣22⟩ = 0, Hhec ∣33⟩ = 0,

Hhec ∣12⟩ = 0, Hhec ∣23⟩ = 0, Hhec ∣31⟩ = 0,

Hhec ∣21⟩ = ∣12⟩ , Hhec ∣32⟩ = 0, Hhec ∣13⟩ = 0.

Interestingly, this simple model appears to contain most of the information
of the eclectic model.
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Integrability

Hhec can be realised as the logarithmic derivative of a transfer matrix

Hhec =
d

du
log(t(u))∣

u=0
.

t(u) is constructed from an R−matrix

R(u) = P + uHhec

which satisfies YBE, and thus

[t(u), t(u′)] = 0.

However Hhec is nilpotent, and therefore non-diagonalisable.
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Spectral Problem

For diagonalisable Hamiltonians H ∶ (C3)⊗L → (C3)⊗L we know there are
3L eigenstates ∣ψj⟩ such that

H ∣ψj⟩ = Ej ∣ψj⟩ , j = 1,2, . . . ,3L.

For the hypereclectic model this must be replaced by

(Hhec − Ej)mj ∣ψmj

j ⟩ = 0, j = 1, . . . ,N, mj = 1, . . . , lj .

There are N Jordan blocks labelled by j , of length lj .

Jordan blocks leads to logarithms in correlation functions. For example

D(O1

O2
) = (∆ 1

0 ∆
)(O1

O2
) → ⟨Oi(x)Oj(0)⟩ ∼ 1

∣x ∣2∆
(log x2 1

1 0
) .
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Spectral Problem

Hhec nilpotent → all generalised eigenvalues Ej are 0.

Hhec is block diagonal with respect to sectors of fixed numbers L −M of
fields φ1, M −K fields φ2, and K fields φ3.

Goal: given L,M,K , find sizes and multiplicities of the Jordan blocks.

(The limit of the) Bethe ansatz fails to describe this.

Let’s see how it works combinatorially for K = 1 in the cyclic sector.
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L = 3,M = 2,K = 1

Work in ‘cyclic sector’, where all states are invariant under the shift
operator t(0). For L = 3,M = 2,K = 1 there are 2 states

∣123⟩ + ∣312⟩ + ∣231⟩ , ∣213⟩ + ∣321⟩ + ∣132⟩ ,

which we write simply as

∣123⟩c , ∣213⟩c .

We clearly identify single a Jordan block of size 2

∣213⟩c
HÐ→ ∣123⟩c

HÐ→ 0,

Hcyc
3,2,1 = (0 1

0 0
) .
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General L, M = 2, K = 1

Things are also trivial for higher L, M = 2,K = 1. There is a single Jordan
block of size L − 1

∣211 . . .13⟩ → ∣121 . . .13⟩ → ∣112 . . .13⟩ → ⋅ ⋅ ⋅ → ∣111 . . .23⟩ → 0,

Things become much more intricate for higher M.
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Data for M = 5
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L = 7,M = 3,K = 1 (15 states)

As before, there is a natural ‘top state’ for a Jordan block

∣2211113⟩ H0

→ ∣2121113⟩ H1

→ ∣2112113⟩ + ∣1221113⟩ H2

→ ∣2111213⟩ + 2 ∣1212113⟩ H3

→ ∣2111123⟩ + 3 ∣1211213⟩ + 2 ∣1122113⟩ H4

→ 4 ∣1211123⟩ + 5 ∣1121213⟩ H5

→ 5 ∣1112213⟩ + 9 ∣1121123⟩ H6

→ 14 ∣1112123⟩ H7

→ 14 ∣1111223⟩ H8

→ 0 H9

This gives a Jordan block of size 9, but state space is still not exhausted.
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L = 7,M = 3,K = 1

∣2211113⟩ H0

→ ∣2121113⟩ H1

→ ∣2112113⟩ + ∣1221113⟩ H2

→ ∣2111213⟩ + 2 ∣1212113⟩ H3

→ ∣2111123⟩ + 3 ∣1211213⟩ + 2 ∣1122113⟩ H4

→ 4 ∣1211123⟩ + 5 ∣1121213⟩ H5

→ 5 ∣1112213⟩ + 9 ∣1121123⟩ H6

→ 14 ∣1112123⟩ H7

→ 14 ∣1111223⟩ H8

→ 0 H9

New ansatz for top state: α ∣2112113⟩ + β ∣1221113⟩.
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L = 7,M = 3,K = 1

α ∣2112113⟩ + β ∣1221113⟩
→ β ∣2111213⟩ + (α + β) ∣1212113⟩
→ β ∣2111123⟩ + (α + 2β) ∣1211213⟩ + (α + β) ∣1122113⟩
→ (α + 3β) ∣1211123⟩ + (2α + 3β) ∣1121213⟩
→ (2α + 3β) ∣1112213⟩ + (3α + 6β) ∣1121123⟩
→ (5α + 9β) ∣1112123⟩ = 0

if α = −9, β = 5. This determines a Jordan block of length 5.
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L = 7,M = 3,K = 1

α ∣2112113⟩ + β ∣1221113⟩
→ β ∣2111213⟩ + (α + β) ∣1212113⟩
→ β ∣2111123⟩ + (α + 2β) ∣1211213⟩ + (α + β) ∣1122113⟩
→ (α + 3β) ∣1211123⟩ + (2α + 3β) ∣1121213⟩
→ (2α + 3β) ∣1112213⟩ + (3α + 6β) ∣1121123⟩
→ (5α + 9β) ∣1112123⟩ = 0

New ansatz for top state: α′ ∣2111123⟩ + β′ ∣1211213⟩ + γ′ ∣1122113⟩. This
is an eigenstate for α′ = −β′ = γ′ = 1, giving a Jordan block of length 1.

Jordan block structure in cyclic sector for L = 7,M = 3,K = 1 is (9,5,1).
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L=7, M=3, K=1

∣φ⟩ ≡ ∣2211113⟩ H0

→ ∣2121113⟩ H1

→ ∣2112113⟩ + ∣1221113⟩ H2

→ ∣2111213⟩ + 2 ∣1212113⟩ H3

→ ∣2111123⟩ + 3 ∣1211213⟩ + 2 ∣1122113⟩ H4

→ 4 ∣1211123⟩ + 5 ∣1121213⟩ H5

→ 5 ∣1112213⟩ + 9 ∣1121123⟩ H6

→ 14 ∣1112123⟩ H7

→ 14 ∣1111223⟩ H8

→ 0 H9

Full Jordan block structure can be deduced by computing dim(Hk ∣φ⟩).
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q-Combinatorics

Encode this structure in a partition function

Z7,3(q) = 1 + q + 2q2 + 2q3 + 3q4 + 2q5 + 2q6 + q7 + q8.

Problem is solved if we can calculate ZL,M(q). It turns out that it is a
q-Binomial coefficient

ZL,M(q) = ( L − 1

M − 1
)
q
=

M−1

∏
k=1

1 − qL−k

1 − qk
,

which is always a polynomial.

The qk coefficient of these polynomials have combinatorial interpretation
as counting number partitions of the integer k subject to certain
restrictions.
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More Examples

For M = 2 the partition functions are very simple

Z7,2(q) = 1 + q + q2 + q3 + q4 + q5.

This indicates a single block of size 6.

It neatly encodes the involved structures in the previous table:

Z9,5(q) =1 + q + 2q2 + 3q3 + 5q4 + 5q5 + 7q6 + 7q7 + 8q8

+ 7q9 + 7q10 + 5q11 + 5q12 + 3q13 + 2q14 + q15 + q16

leads to a Jordan block spectrum (17,13,11,92,52,1).

Luke Corcoran Combinatorial Solution of Non-diagonalisable Spin Chains 20/22



General Situation (To Appear)

Can rewrite
Z(q) = tr qŜ ,

for an appropriate state-counting operator Ŝ . Generalises naturally to
higher K .

Eclectic: Universality hypothesis. Spectrum of hypereclectic matches that
of the eclectic provided the filling conditions

L −M ≥M −K ≥ K

are satisfied.
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Conclusions and Outlook
We devised a partition function which encodes Jordan block spectrum
of the (hyper)eclectic spin chain.

This in turn determines the logarithmic structure of certain
correlation functions in strongly twisted N = 4 SYM.

Can we relate Z(q) to objects in integrability?

Prove rigorously universality hypothesis.

Connect to general LCFT results.

Higher loops?

Other non-diagonalisable models: different strong twisting limits,
different theories (chiral ABJM).

Luke Corcoran Combinatorial Solution of Non-diagonalisable Spin Chains 22/22


	Strongly Twisted N=4 SYM
	Hypereclectic Spin Chain and Integrability
	Spectral Problem and Data
	Solution via q-Combinatorics

