Combinatorial Solution of Non-diagonalisable Spin Chains

Luke Corcoran
Humboldt-Universität zu Berlin

IPhT, Saclay, September 15th, 2021

SAGEX
Scattering Amplitudes: from Geometry to Experiment

Based on

- The One-Loop Spectral Problem of Strongly Twisted $\mathcal{N}=4$ Super Yang-Mills Theory by Ipsen, Staudacher, Zippelius [1812.08794]
- The Integrable (Hyper)eclectic Spin Chain by Ahn, Staudacher [2010.14515]
- Work in progress by Ahn, Corcoran, Staudacher [2110.soon]

Motivation

- Strongly twisted planar $\mathcal{N}=4$ super Yang-Mills is a non-unitary toy model which retains integrability.
- One-loop dilatation operator \mathfrak{D} is one of the simplest settings to understand integrability.
- In certain operator sectors \mathfrak{D} in non-diagonalisable, which leads to logarithms in correlation functions determined by Jordan block structures.
- Bethe ansatz fails to describe the sizes and multiplicities of these Jordan blocks. What can be done?

Outline

(1) Strongly Twisted $\mathcal{N}=4$ SYM
(2) Hypereclectic Spin Chain and Integrability
(3) Spectral Problem and Data
(4) Solution via q-Combinatorics

Strongly Twisted $\mathcal{N}=4$ SYM

Start from γ-deformed $\mathcal{N}=4 \mathrm{SYM} \mathcal{L}_{\mathrm{SYM}}\left(A, \Psi, \Phi, g, N_{c}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ and take the limit [Gürdogan, Kazakov '15]

$$
g=\frac{\sqrt{\lambda}}{4 \pi} \rightarrow 0, \quad q_{j}=e^{-i \gamma_{j} / 2} \rightarrow \infty \quad \text { or } 0
$$

where either $g q_{j} \equiv \xi_{j}^{+}$or $g q_{j}^{-1} \equiv \xi_{j}^{-}$are held fixed.
There are $2^{3}=8$ possible limits. For $\left(q_{1}, q_{2}, q_{3}\right)=(\infty, \infty, \infty)$ we have

$$
\begin{aligned}
\mathcal{L}_{\text {int }} & =N_{c} \operatorname{tr}\left(\left(\xi_{1}^{+}\right)^{2} \phi_{2}^{\dagger} \phi_{3}^{\dagger} \phi_{2} \phi_{3}+\left(\xi_{2}^{+}\right)^{2} \phi_{3}^{\dagger} \phi_{1}^{\dagger} \phi_{3} \phi_{1}+\left(\xi_{3}^{+}\right)^{2} \phi_{1}^{\dagger} \phi_{2}^{\dagger} \phi_{1} \phi_{2}\right) \\
& +N_{c} \operatorname{tr}\left(i \sqrt{\xi_{2}^{+} \xi_{3}^{+}}\left(\psi^{3} \phi_{1} \psi^{2}+\bar{\psi}_{3} \phi_{1}^{\dagger} \bar{\psi}_{2}\right)+\text { cyclic }\right) .
\end{aligned}
$$

Overall the 8 limits give 2 inequivalent models ($6+2$).

Electic Spin Chain

Consider local composite operators of length L built from ϕ_{i}

$$
\mathcal{O}_{j_{1}, j_{2}, \ldots, j_{L}}(x)=\operatorname{tr}\left(\phi_{j_{1}} \phi_{j_{2}} \ldots \phi_{j_{L}}(x)\right) .
$$

The dilatation operator reads [Ahn, Staudacher '20]

$$
\mathfrak{D}=\mathfrak{D}_{0}+g^{2} H_{\mathrm{ec}}+O\left(g^{4}\right)
$$

For $\left(q_{1}, q_{2}, q_{3}\right)=(\infty, \infty, \infty)$ we have

$$
H_{\mathrm{ec}}=\sum_{i=1}^{L} \mathcal{H}_{\mathrm{ec}}^{i, i+1}, \quad H_{\mathrm{ec}}:\left(\mathbb{C}^{3}\right)^{\otimes L} \rightarrow\left(\mathbb{C}^{3}\right)^{\otimes L}
$$

where

$$
\begin{array}{rlrl}
\mathcal{H}_{\mathrm{ec}}|11\rangle=0, & \mathcal{H}_{\mathrm{ec}}|22\rangle=0, & & \mathcal{H}_{\mathrm{ec}}|33\rangle=0, \\
\mathcal{H}_{\mathrm{ec}}|12\rangle=0, & \mathcal{H}_{\mathrm{ec}}|23\rangle=0, & & \mathcal{H}_{\mathrm{ec}}|31\rangle=0, \\
\mathcal{H}_{\mathrm{ec}}|21\rangle=\xi_{3}^{+}|12\rangle, & \mathcal{H}_{\mathrm{ec}}|32\rangle=\xi_{1}^{+}|23\rangle, & \mathcal{H}_{\mathrm{ec}}|13\rangle=\xi_{2}^{+}|31\rangle .
\end{array}
$$

Hypereclectic Spin Chain

For $\xi_{1}^{+}=\xi_{2}^{+}=0, \xi_{3}^{+}=1$ we get the hypereclectic spin chain:

$$
H_{\text {hec }}=\sum_{i=1}^{L} \mathcal{H}_{\text {hec }}^{i, i+1}
$$

where

$$
\begin{array}{lll}
\mathcal{H}_{\text {hec }}|11\rangle=0, & \mathcal{H}_{\text {hec }}|22\rangle=0, & \mathcal{H}_{\text {hec }}|33\rangle=0, \\
\mathcal{H}_{\text {hec }}|12\rangle=0, & \mathcal{H}_{\text {hec }}|23\rangle=0, & \mathcal{H}_{\text {hec }}|31\rangle=0, \\
\mathcal{H}_{\text {hec }}|21\rangle=|12\rangle, & \mathcal{H}_{\text {hec }}|32\rangle=0, & \mathcal{H}_{\text {hec }}|13\rangle=0 .
\end{array}
$$

Interestingly, this simple model appears to contain most of the information of the eclectic model.

Integrability

$H_{\text {hec }}$ can be realised as the logarithmic derivative of a transfer matrix

$$
H_{\text {hec }}=\left.\frac{d}{d u} \log (t(u))\right|_{u=0} .
$$

$t(u)$ is constructed from an R-matrix

$$
R(u)=\mathcal{P}+u \mathcal{H}_{\text {hec }}
$$

which satisfies YBE, and thus

$$
\left[t(u), t\left(u^{\prime}\right)\right]=0 .
$$

However $H_{\text {hec }}$ is nilpotent, and therefore non-diagonalisable.

Spectral Problem

For diagonalisable Hamiltonians $H:\left(\mathbb{C}^{3}\right)^{\otimes L} \rightarrow\left(\mathbb{C}^{3}\right)^{\otimes L}$ we know there are 3^{L} eigenstates $\left|\psi_{j}\right\rangle$ such that

$$
H\left|\psi_{j}\right\rangle=E_{j}\left|\psi_{j}\right\rangle, \quad j=1,2, \ldots, 3^{L}
$$

For the hypereclectic model this must be replaced by

$$
\left(H_{\text {hec }}-E_{j}\right)^{m_{j}}\left|\psi_{j}^{m_{j}}\right\rangle=0, \quad j=1, \ldots, N, \quad m_{j}=1, \ldots, l_{j}
$$

There are N Jordan blocks labelled by j, of length l_{j}.
Jordan blocks leads to logarithms in correlation functions. For example

$$
\mathfrak{D}\binom{\mathcal{O}_{1}}{\mathcal{O}_{2}}=\left(\begin{array}{cc}
\Delta & 1 \\
0 & \Delta
\end{array}\right)\binom{\mathcal{O}_{1}}{\mathcal{O}_{2}} \rightarrow\left\langle\mathcal{O}_{i}(x) \mathcal{O}_{j}(0)\right\rangle \sim \frac{1}{|x|^{2 \Delta}}\left(\begin{array}{cc}
\log x^{2} & 1 \\
1 & 0
\end{array}\right)
$$

Spectral Problem

$H_{\text {hec }}$ nilpotent \rightarrow all generalised eigenvalues E_{j} are 0 .
$H_{\text {hec }}$ is block diagonal with respect to sectors of fixed numbers $L-M$ of fields $\phi_{1}, M-K$ fields ϕ_{2}, and K fields ϕ_{3}.

Goal: given L, M, K, find sizes and multiplicities of the Jordan blocks.
(The limit of the) Bethe ansatz fails to describe this.

Let's see how it works combinatorially for $K=1$ in the cyclic sector.
$L=3, M=2, K=1$

Work in 'cyclic sector', where all states are invariant under the shift operator $t(0)$. For $L=3, M=2, K=1$ there are 2 states

$$
|123\rangle+|312\rangle+|231\rangle, \quad|213\rangle+|321\rangle+|132\rangle,
$$

which we write simply as

$$
|123\rangle_{c}, \quad|213\rangle_{c}
$$

We clearly identify single a Jordan block of size 2

$$
\begin{gathered}
|213\rangle_{c} \xrightarrow{H}|123\rangle_{c} \xrightarrow{H} 0, \\
H_{3,2,1}^{\text {cyc }}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

General $L, M=2, K=1$

Things are also trivial for higher $L, M=2, K=1$. There is a single Jordan block of size L - 1

$$
|211 \ldots 13\rangle \rightarrow|121 \ldots 13\rangle \rightarrow|112 \ldots 13\rangle \rightarrow \cdots \rightarrow|111 \ldots 23\rangle \rightarrow 0,
$$

Things become much more intricate for higher M.

Data for $M=5$

Table 3: Structures of Jordan blocks for the sector of $M=5, K=1, k=0$ (cyclic states). Exponents denote multiplicities.

$L=7, M=3, K=1$ (15 states)

As before, there is a natural 'top state' for a Jordan block

$\|2211113\rangle$	H^{0}
$\rightarrow\|2121113\rangle$	H^{1}
$\rightarrow\|2112113\rangle+\|1221113\rangle$	H^{2}
$\rightarrow\|2111213\rangle+2\|1212113\rangle$	H^{3}
$\rightarrow\|2111123\rangle+3\|1211213\rangle+2\|1122113\rangle$	H^{4}
$\rightarrow 4\|1211123\rangle+5\|1121213\rangle$	H^{5}
$\rightarrow 5\|1112213\rangle+9\|1121123\rangle$	H^{6}
$\rightarrow 14\|1112123\rangle$	H^{7}
$\rightarrow 14\|1111223\rangle$	H^{8}
$\rightarrow 0$	H^{9}

This gives a Jordan block of size 9, but state space is still not exhausted.
$L=7, M=3, K=1$

$\|2211113\rangle$	H^{0}
$\rightarrow\|2121113\rangle$	H^{1}
$\rightarrow\|2112113\rangle+\|1221113\rangle$	H^{2}
$\rightarrow\|2111213\rangle+2\|1212113\rangle$	H^{3}
$\rightarrow\|211123\rangle+3\|1211213\rangle+2\|1122113\rangle$	H^{4}
$\rightarrow 4\|1211123\rangle+5\|1121213\rangle$	H^{5}
$\rightarrow 5\|1112213\rangle+9\|1121123\rangle$	H^{6}
$\rightarrow 14\|1112123\rangle$	H^{7}
$\rightarrow 14\|1111223\rangle$	H^{8}
$\rightarrow 0$	H^{9}

New ansatz for top state: $\alpha|2112113\rangle+\beta|1221113\rangle$.

$$
L=7, M=3, K=1
$$

$$
\begin{aligned}
& \alpha|2112113\rangle+\beta|1221113\rangle \\
& \rightarrow \beta|2111213\rangle+(\alpha+\beta)|1212113\rangle \\
& \rightarrow \beta|2111123\rangle+(\alpha+2 \beta)|1211213\rangle+(\alpha+\beta)|1122113\rangle \\
& \rightarrow(\alpha+3 \beta)|1211123\rangle+(2 \alpha+3 \beta)|1121213\rangle \\
& \rightarrow(2 \alpha+3 \beta)|1112213\rangle+(3 \alpha+6 \beta)|1121123\rangle \\
& \rightarrow(5 \alpha+9 \beta)|1112123\rangle=0
\end{aligned}
$$

if $\alpha=-9, \beta=5$. This determines a Jordan block of length 5 .

$$
L=7, M=3, K=1
$$

$$
\begin{aligned}
& \alpha|2112113\rangle+\beta|1221113\rangle \\
& \rightarrow \beta|2111213\rangle+(\alpha+\beta)|1212113\rangle \\
& \rightarrow \beta|2111123\rangle+(\alpha+2 \beta)|1211213\rangle+(\alpha+\beta)|1122113\rangle \\
& \rightarrow(\alpha+3 \beta)|1211123\rangle+(2 \alpha+3 \beta)|1121213\rangle \\
& \rightarrow(2 \alpha+3 \beta)|1112213\rangle+(3 \alpha+6 \beta)|1121123\rangle \\
& \rightarrow(5 \alpha+9 \beta)|1112123\rangle=0
\end{aligned}
$$

New ansatz for top state: $\alpha^{\prime}|2111123\rangle+\beta^{\prime}|1211213\rangle+\gamma^{\prime}|1122113\rangle$. This is an eigenstate for $\alpha^{\prime}=-\beta^{\prime}=\gamma^{\prime}=1$, giving a Jordan block of length 1 .

Jordan block structure in cyclic sector for $L=7, M=3, K=1$ is $(9,5,1)$.

$\mathrm{L}=7, \mathrm{M}=3, \mathrm{~K}=1$

$$
\begin{array}{ll}
|\phi\rangle \equiv|2211113\rangle & H^{0} \\
\rightarrow|2121113\rangle & H^{1} \\
\rightarrow|2112113\rangle+|1221113\rangle & H^{2} \\
\rightarrow|2111213\rangle+2|1212113\rangle & H^{3} \\
\rightarrow|2111123\rangle+3|1211213\rangle+2|1122113\rangle & H^{4} \\
\rightarrow 4|1211123\rangle+5|1121213\rangle & H^{5} \\
\rightarrow 5|1112213\rangle+9|1121123\rangle & H^{6} \\
\rightarrow 14|1112123\rangle & H^{7} \\
\rightarrow 14|1111223\rangle & H^{8} \\
\rightarrow 0 & H^{9}
\end{array}
$$

Full Jordan block structure can be deduced by computing $\operatorname{dim}\left(H^{k}|\phi\rangle\right)$.

q-Combinatorics

Encode this structure in a partition function

$$
Z_{7,3}(q)=1+q+2 q^{2}+2 q^{3}+3 q^{4}+2 q^{5}+2 q^{6}+q^{7}+q^{8}
$$

Problem is solved if we can calculate $Z_{L, M}(q)$. It turns out that it is a q-Binomial coefficient

$$
Z_{L, M}(q)=\binom{L-1}{M-1}_{q}=\prod_{k=1}^{M-1} \frac{1-q^{L-k}}{1-q^{k}}
$$

which is always a polynomial.

The q^{k} coefficient of these polynomials have combinatorial interpretation as counting number partitions of the integer k subject to certain restrictions.

More Examples

For $M=2$ the partition functions are very simple

$$
Z_{7,2}(q)=1+q+q^{2}+q^{3}+q^{4}+q^{5}
$$

This indicates a single block of size 6 .
It neatly encodes the involved structures in the previous table:

$$
\begin{aligned}
Z_{9,5}(q)= & 1+q+2 q^{2}+3 q^{3}+5 q^{4}+5 q^{5}+7 q^{6}+7 q^{7}+8 q^{8} \\
& +7 q^{9}+7 q^{10}+5 q^{11}+5 q^{12}+3 q^{13}+2 q^{14}+q^{15}+q^{16}
\end{aligned}
$$

leads to a Jordan block spectrum $\left(17,13,11,9^{2}, 5^{2}, 1\right)$.

General Situation (To Appear)

Can rewrite

$$
Z(q)=\operatorname{tr} q^{\hat{S}}
$$

for an appropriate state-counting operator \hat{S}. Generalises naturally to higher K.

Eclectic: Universality hypothesis. Spectrum of hypereclectic matches that of the eclectic provided the filling conditions

$$
L-M \geq M-K \geq K
$$

are satisfied.

Conclusions and Outlook

- We devised a partition function which encodes Jordan block spectrum of the (hyper)eclectic spin chain.
- This in turn determines the logarithmic structure of certain correlation functions in strongly twisted $\mathcal{N}=4$ SYM.
- Can we relate $Z(q)$ to objects in integrability?
- Prove rigorously universality hypothesis.
- Connect to general LCFT results.
- Higher loops?
- Other non-diagonalisable models: different strong twisting limits, different theories (chiral ABJM).

