The Gaudin matrix and AdS/CFT

Charlotte Kristjansen Niels Bohr Institute

Based on:

- C.K., D. Müller & K. Zarembo, ArXiv:2011.12192[hep-th], JHEP 03 (2021) 100
- C.K., D. Müller & K. Zarembo, ArXiv:2106.08116[hep-th], JHEP 09 (2021) 004

Correlation Functions and Wave Functions in Solvable Models IPhT, Saclay & ENS, Paris
September 12th, 2021

Motivation: Spin chain perspective

- Encodes the norm of a Bethe eigenstate via its determinant
- Encodes the overlap of a Bethe eigenstate with an integrable boundary state via its super determinant
- Encodes the representation theory of the underlying (super) Lie algebra including certain duality relations

Motivation: AdS/CFT beyond the spectral problem

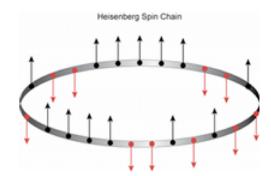
- Operators need normalization
- Correlation functions can be formulated as overlaps
- Duality relations might constrain correlation functions

Plan of the talk

- I. The Gaudin matrix
- II. One-point functions in a BCFT (in AdS/CFT)
- III. Fermionic duality relations (simple examples)
- IV. Bosonic duality relations (simple examples)
- V. Some technicalities (towards a proof, singular roots)
- VI. Outlook

The Gaudin matrix and the norm

$$H = \sum_{n=1}^{L} (1 - P_{n,n+1})$$



 $|\{u_i\}_{i=1}^K\rangle \equiv |\mathbf{u}\rangle$: Eigenstates with K excitations where

$$1 = \left(\frac{u_k - \frac{i}{2}}{u_k + \frac{i}{2}}\right)^L \prod_{j \neq k}^K \frac{u_k - u_j + \frac{i}{2}}{u_k - u_j - \frac{i}{2}} = e^{i\chi_k} \qquad k = 1, \dots, K$$

Gaudin matrix
$$G_{kj} = \frac{\partial \chi_k}{\partial u_j}$$
 $K \times K$ matrix

$$\langle \mathbf{u} | \mathbf{u} \rangle \propto \det G$$

The Gaudin matrix and overlaps

Integrable boundary states $|B\rangle$:

$$\langle B|\mathbf{u}\rangle$$
 computable in closed form

Matrix product states de Leeuw, CK, Zarembo '15

$$|B\rangle = |\text{MPS}\rangle = \sum_{\{s_i\}} \text{Tr}(t_{s_1} \dots t_{s_L}) |s_1 \dots s_L\rangle$$

Valence Bond States

$$|VBS\rangle = |K\rangle^{\otimes \frac{L}{2}}, \qquad K = \sum_{s_1, s_2} K_{s_1, s_2} |s_1 s_2\rangle$$

Integrability understood in a scattering picture

$$\mathbf{Q}_{2n+1}|B\rangle = 0$$

Ghoshal & Zamolodchikov '94

Piroli, Pozsgay Vernier '17

Integrable overlaps and the Gaudin determinant

$$\hat{\mathbf{Q}}_{2\mathbf{n}+1}|B\rangle = 0 \implies$$

$$\langle B|\mathbf{u}\rangle \neq 0$$
 iff roots are paired $\{u_i, -u_i\}_{i=1}^{K_u}$

Gaudin matrix has block structure

$$\det G = \begin{vmatrix} A & B \\ B & A \end{vmatrix} = \begin{vmatrix} A+B & B \\ B+A & A \end{vmatrix} = \begin{vmatrix} A+B & B \\ 0 & A-B \end{vmatrix} = \det(A+B) \cdot \det(A-B)$$
$$= \det G_{+} \cdot \det G_{-}$$

Quantity entering overlap formulas

$$\mathrm{SDet}\,G = \frac{\det G_+}{\det G_-} \equiv \mathbb{D}$$

$$|\mathrm{VBS}\rangle = (|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle)^{\otimes L/2}, \qquad \frac{\langle \mathrm{VBS}|\mathbf{u}\rangle^2}{\langle \mathbf{u}|\mathbf{u}\rangle} = \frac{Q(0)}{Q(\frac{i}{2})}\,\mathrm{SDet}G \qquad \text{Pozsgay '18}$$

Integrable Super Spin Chains (of type SU(M|N))

Cartan matrix M_{ab} , Dynkin labels q_a , $a, b = 1, \ldots, M + N - 1$

Bethe equations

$$(-1)^{F_a+1} = \left(\frac{u_{a,j} - \frac{iq_a}{2}}{u_{a,j} + \frac{iq_a}{2}}\right)^L \prod_{b,k} \frac{u_{a,j} - u_{b,k} + \frac{iM_{ab}}{2}}{u_{a,j} - u_{b,k} - \frac{iM_{ab}}{2}} \equiv e^{i\chi_{a,j}}$$

$$u_{a,j}$$
: $a = 1, ... \#$ of nodes in Dynkin diagram $j = 1, ..., K_a \ (\# \text{ of roots of type a})$

$$G_{aj,bk} = \frac{\partial \chi_{a,j}}{\partial u_{b,k}}$$

$$\frac{\langle \text{VBS}|\mathbf{u}\rangle^2}{\langle \mathbf{u}|\mathbf{u}\rangle} = \prod_{a} \frac{\prod_{j=1}^{n_a} Q_a(\frac{is_{a,j}}{2})}{\prod_{k=1}^{m_a} Q_a(\frac{ir_{a,k}}{2})} \text{ SDet}G$$

Gombor & Bajnok '20 Komatsu & Want '20 C.K., Müller, Zarembo '20

AdS/CFT: N=M=4

QQ-system

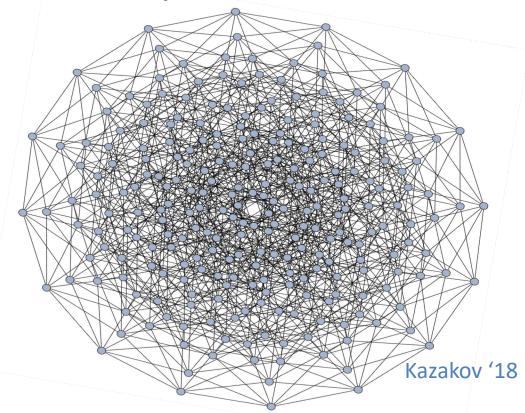
Q-functions and QSC optimal language for the spectral problem

Many equivalent ways of writing the Bethe equations

For $\mathcal{N}=4$ SYM, # different choices of Q-functions = 2^8

Connected via dualities

- Fermionic (Change of Dynkin diagram)
- Bosonic



How does the Gaudin matrix fit into this?

Example: SU(2|1) super spin chain

Encodes conformal single trace operators built from fields X (bosonic), Ψ_1, Ψ_2 (fermionic) in $\mathcal{N} = 4$ SYM

$$M = \begin{bmatrix} 2 & -1 \\ -1 & 0 \end{bmatrix}, \quad q = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{array}{ccc}
1 \\
\bigcirc & \otimes \\
Q_1, u_i, K_1 & Q_2, v_i, K_2
\end{array}$$

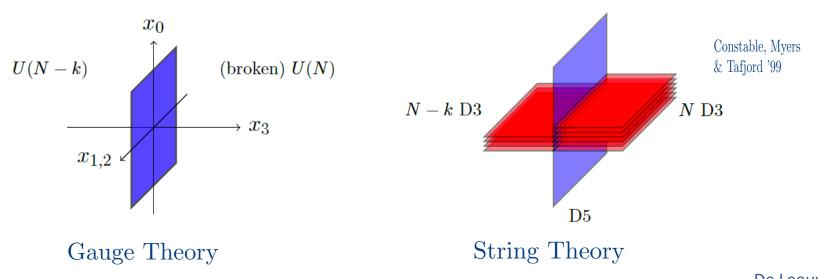
$$H = \sum_{n=1}^{L} (1 - \prod_{n,n+1})$$
 graded permutation

Baxter polynomials

$$Q_1(u) = \prod_{i=1}^{K_1} (u - u_i), \qquad Q_2(u) = \prod_{j=1}^{K_2} (v - v_j)$$
 (plus two trivial ones)

Vacuum: $|\Psi_1\Psi_1...\rangle$, Excitations at level 1 and 2: Ψ_2 , X

AdS/dCFT and overlaps in SU(2|1) spin chain



De Leeuw The k > 1 case: Fuzzy funnel solution, defect described by $|\text{MPS}\rangle$ Zarembo '15

C.K, Müller & The k = 1 case: Defect described by $|VBS\rangle$ Zarembo '20

For
$$x_3 > 0$$
:

$$A_{\mu}, \Phi_{i}, \Psi_{lpha} = egin{bmatrix} 1 & N-1 \ \hline x & y & y & y \ \hline y & z & z & z \ y & z & z & z \ y & z & z & z \ \end{bmatrix}$$

Boundary conditions Dirichlet x, y(supersymmetric)

$$egin{array}{c|c} \Phi_{4,5,6} & \Phi_{1,2,3} \\ \hline x,y & Dirichlet & Neumann \\ z & no BCs & no BCs \\ \hline \end{array}$$

One-point functions

$$\langle \mathcal{O}_{\Delta}(x) \rangle = \frac{C}{|x_3|^{\Delta}}$$

Propagators for complex scalars: $X = \phi_1 + i\phi_4$, etc.

$$D_{\kappa}(x,y) = \frac{1}{4\pi^2} \left(\frac{1}{|x-y|^2} + \frac{\kappa}{|\bar{x}-y|^2} \right), \quad \kappa = \begin{cases} 1 & \text{Neumann} \\ -1 & \text{Dirichlet} \\ 0 & \text{no BCs.} \end{cases}$$

$$\bar{x} = (x_0, x_1, x_2, -x_3)$$

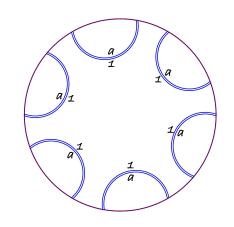
$$\langle X^{1a}(x)X^{b1}(y)\rangle = \frac{g_{YM}^2\delta^{ab}}{2}\Big(D_1(x,y) - D_{-1}(x,y)\Big) = \frac{g_{YM}^2\delta^{ab}}{4\pi^2|\bar{x} - y|^2},$$

Propagators for the fermions

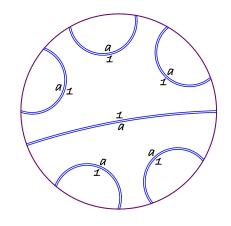
$$\langle \Psi_{\alpha}^{1a}(x)\Psi_{\beta}^{b1}(y)\rangle = \frac{g_{\rm YM}^2}{8\pi^2} \,\epsilon_{\alpha\beta} \,\delta^{ab} \cdot \frac{\bar{x}_3 - y_3}{|\bar{x} - y|^4}.$$

One-point functions and VBS

Feynman diagrams



Leading for large-N



Sub-leading for large-N

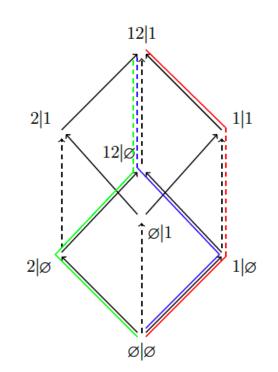
C.K., Müller, Zarembo '20

Object to calculate
$$C_{k=1} = \frac{\langle VBS | \mathbf{u} \rangle}{\langle \mathbf{u} | \mathbf{u} \rangle^{1/2}}$$

$$\langle VBS| = (\langle XX| + \langle \Psi_1 \Psi_2| - \langle \Psi_2 \Psi_1|)^{\otimes L/2},$$

$$C_{k=1} = \frac{Q_1(0)Q_2(0)}{Q_1\left(\frac{i}{2}\right)} SDet G$$

Tsuboi '98



 2^3 Q-functions, 2 fixed

$$Q_{\emptyset|\emptyset} = u^L, \ Q_{12|1} = 1$$

 $6 = 3 \times 2$ versions of the BE's (\sim paths)

Standard choice: Blue path \bigcirc — \bigotimes

Bosonic duality

$$\bigcirc$$
 \longrightarrow \otimes \otimes

$$Q_{12|\emptyset}Q_{1|1} = Q_{1|\emptyset}^{-} - Q_{1|\emptyset}^{+}$$

$$\bigcirc --- \otimes \longrightarrow \bigcirc --- \otimes$$

$$Q_{1|\emptyset}^+ Q_{2|\emptyset}^- - Q_{1|\emptyset}^- Q_{2|\emptyset}^+ = Q_{\emptyset|\emptyset} Q_{12|\emptyset}$$

Fermionic Duality: Ex:
$$SU(2|1)$$

Beisert, Kazakov, , Sakai, Zarembo '05

$$\bigcirc \longrightarrow \bigotimes M = \begin{bmatrix} 2 & -1 \\ -1 & 0 \end{bmatrix}, q = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \bigotimes - - - \bigotimes \widetilde{M} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \widetilde{q} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$Q_1, u_i, K_1 \ Q_2, v_j, K_2$$

Change of variables (from v_j to \tilde{v}_j)

$$K_2 \text{ roots } v_j$$

$$\downarrow$$

$$Q_1^-(v) - Q_1^+(v) = Q_2(v) \cdot \widetilde{Q}_2(v)$$

$$\widetilde{K}_2 = K_1 - K_2 - 1 \text{ roots } \widetilde{v}_j$$

$$1 = \frac{Q_1^-(v_k)}{Q_1^+(v_k)} \longrightarrow \frac{Q_1^+(\tilde{v}_k)}{Q_1^-(\tilde{v}_k)} = 1$$

$$-1 = \frac{Q_1^{++}(u_k)}{Q_1^{--}(u_k)} \cdot \frac{Q_2^{-}(u_k)}{Q_2^{+}(u_k)} \left(\frac{Q_{\theta}^{-}(u_k)}{Q_{\theta}^{+}(u_k)}\right)^L \longrightarrow \frac{\widetilde{Q}_2^{+}(u_k)}{\widetilde{Q}_2^{-}(u_k)} \left(\frac{Q_{\theta}^{-}(u_k)}{Q_{\theta}^{+}(u_k)}\right)^L = 1$$

Transformation formula: Ex: SU(2|1)

$$\bigcirc --- \otimes \\ K_1 \quad K_2 \qquad \qquad \otimes --- \otimes \\ K_1 \quad \widetilde{K}_2$$

 K_1, K_2 even $\Longrightarrow \widetilde{K_2} = K_1 - K_2 - 1$ odd, i.e. \widetilde{v} 's contain a single zero Det \widetilde{G} still factorizes

$$Q_1^+(u) - Q_1^-(u) = iK_1 u Q_2(u) \widetilde{Q}_2(u)$$
, with reduced Baxter polynomials

$$\widetilde{\mathbb{D}} = K_1 \frac{\widetilde{Q}_2(0)Q_2(0)}{Q_1(\frac{i}{2})} \, \mathbb{D}$$
 Foundaries

Found numerically Zarembo '20

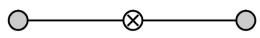
Analytical proof in progress

Notice:

- Holds semi-on-shell (the $\{u_i, -u_i\}$'s can be chosen at random)
- Covariance of overlap formula which involves $Q_2(0)\mathbb{D}$
- Factor K_1 signals that a hws is mapped to a descendent

Fermionic dualities in general

• Allow one to move between any two Dynkin diagrams of a super Lie algebra (of type SU(N|M))



• Involve a fermionic node and its neighbours only

• Changes the nature of neighbouring nodes ⊗ ← → ○ and the connections — ← → - - -

- Dualized node non-momentum carrying \implies Dynkin labels unchanged (Dynkin label equal to zero)
- Dualized node momentum carrying \implies Dynkin labels change

$$\begin{bmatrix} 0 \\ V \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} V \pm 1 \\ -V \\ V \mp 1 \end{bmatrix} \quad \text{for} \quad --- \otimes ---$$

Dualizing a non-momentum-carrying node

$$\bigcirc \qquad \otimes \qquad \bigcirc$$
 $K_l \qquad K_m \qquad K_r$

$$M = \begin{bmatrix} \eta_2 & \eta_1 & 0 \\ \eta_1 & 0 & -\eta_1 \\ 0 & -\eta_1 & \eta_3 \end{bmatrix}, \qquad q = \begin{bmatrix} V_l \\ 0 \\ V_r \end{bmatrix}, \qquad \begin{aligned} \eta_1 \in \{-1, +1\} \\ \eta_2 \in \{0, -2\eta_1\} \\ \eta_3 \in \{0, 2\eta_1\} \end{aligned}$$

$$K_l, K_r, K_m$$
 all even $\implies \widetilde{K}_m = K_l + K_r - K_m - 1$ odd

$$Q_l^- Q_r^+ - Q_l^+ Q_r^- = i \eta_1 (K_r - K_l) u \, Q_m \widetilde{Q}_m \,,$$

C.K., Müller, Zarembo '20

$$\widetilde{\mathbb{D}} = J \, \mathbb{D} = (-\eta_1)^{K_l} \eta_1^{K_r} \left(\eta_1 K_r - \eta_1 K_l \right) \frac{Q_m(0) Q_m(0)}{Q_l \left(\frac{i}{2} \right) Q_r \left(\frac{i}{2} \right)} \, \mathbb{D}$$

Found numerically Analytical proof in progress

 K_l, K_r even, K_m odd

$$\widetilde{\mathbb{D}} = (-J)^{-1} \, \mathbb{D} \,,$$

Dualizing a momentum-carrying node

$$M = \begin{bmatrix} \eta_2 & \eta_1 & 0 \\ \eta_1 & 0 & -\eta_1 \\ 0 & -\eta_1 & \eta_3 \end{bmatrix}, \qquad q = \begin{bmatrix} 0 \\ V \\ 0 \end{bmatrix}, \qquad \begin{aligned} \eta_1 \in \{-1, +1\} \\ \eta_2 \in \{0, -2\eta_1\} \\ \eta_3 \in \{0, 2\eta_1\} \end{aligned}$$

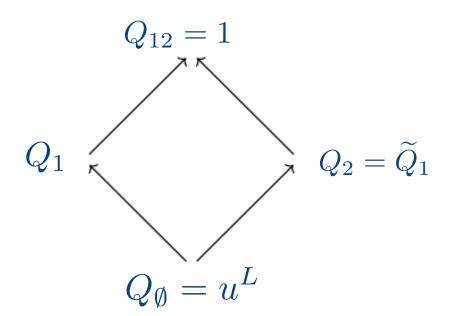
$$K_l, K_r, K_m, L \text{ all even } \Longrightarrow \widetilde{K}_m = L + K_l + K_r - K_m - 1 \text{ odd}$$

 $(u + V_{\frac{i}{2}})^L Q_l^- Q_r^+ - (u - V_{\frac{i}{2}})^L Q_l^+ Q_r^- = i(VL - \eta_1 K_l + \eta_1 K_r) u Q_m \widetilde{Q}_m,$

$$\widetilde{\mathbb{D}} = \left(\frac{2i}{V}\right)^{L} \left(VL - \eta_1 K_l + \eta_1 K_r\right) \frac{Q_m(0)\widetilde{Q}_m(0)}{Q_l\left(\frac{i}{2}\right)Q_r\left(\frac{i}{2}\right)} \, \mathbb{D} \,, \quad \text{Analytical proof}$$
in progress

NB: K_r odd or K_l odd requires regularization

Bosonic Dualities: A warm-up example: SU(2)



Bosonic duality eqn.

$$Q_1^+ \widetilde{Q}_1^- - Q_1^- \widetilde{Q}_1^+ = u^L$$

$$\widetilde{K} = L - K + 1$$
 (States beyond the equator)

Dual roots at $0, \pm \frac{i}{2}$ call for regularization of det G

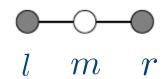
After regularization: Roots at $0, \pm \frac{i}{2}$ left out in \widetilde{Q}

$$\widetilde{\mathbb{D}} = \mathbb{A}_{L/2-K} \frac{Q(0)\widetilde{Q}(i/2)}{Q(i/2)\widetilde{Q}(0)} \mathbb{D}, \qquad \mathbb{A}_n = \frac{(2^n n!)^4}{2(2n)!(2n+1)!}$$

Overlaps with VBS Duality invariant

Bosonic dualities in general

• Involve a bosonic node and its neighbours only



- Do not change the Dynkin diagram or the Dynkin labels
- Momentum carrying bosonic node

$$\widetilde{\mathbb{D}} = \mathbb{A}_{(L+K_r+K_l)/2-K_m} \frac{Q_m(0)\widetilde{Q}_m(i/2)}{Q_m\left(\frac{i}{2}\right)\widetilde{Q}_m(0)} \mathbb{D}$$

• Non-momentum carrying bosonic node

$$\widetilde{\mathbb{D}} = \mathbb{A}_{(K_r + K_l)/2 - K_m} \frac{Q_m(0)\widetilde{Q}_m(i/2)}{Q_m(\frac{i}{2})\widetilde{Q}_m(0)} \mathbb{D}$$

• Overlaps in the scalar SO(6) sector invariant (up to pre-factor)

A note on singular roots

$$\langle \text{VBS} | \mathbf{u} \rangle \neq 0$$
: momentum carrying roots: $\{u_i, -u_i\}_{i=1}^{K_u}$ auxiliary roots: $\{v_i, -v_i\}_{i=1}^{K_v}$, possibly $\cup \{0\}$

Duality transformations introduce dual roots at $0, \pm \frac{i}{2}$

Need to know the Gaudin matrix, i.e. G_{\pm} for these cases

Root at zero: Naturally included in G_+

Roots at $\pm \frac{i}{2}$: Lead to divergencies in G_+, G_- Can be regulated by impurities and removing row and column of singular root from G_-

Special challenge for bosonic dualities: $\det G_+ = 0$ Regulated by removing the entries of the zero root

Summary

- We have determined the transformation properties of the Gaudin super determinants under all fermionic and bosonic dualities encoded in the QQ-system.
- We can translate overlap formulas between any two Dynkin diagrams (Kostya's talk).

Open Problems

- Analytical proof of the duality transformation formulas
 Easy to state --- difficult to prove
- Understand the pre-factors in the transformation formulas
- Understanding the rationale for the regularization in the bosonic case
- Express the overlaps entirely in terms of Q-functions and treat the overlaps by means of the Quantum Spectral Curve

Thank you