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Motivation: Spin chain perspective
* Encodes the norm of a Bethe eigenstate via its determinant

* Encodes the overlap of a Bethe eigenstate with an integrable
boundary state via its super determinant

* Encodes the representation theory of the underlying (super)
Lie algebra including certain duality relations

Motivation: AAS/CFT beyond the spectral problem

* Operators need normalization

* Correlation functions can be formulated as overlaps

* Duality relations might constrain correlation functions
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Plan of the talk

The Gaudin matrix

One-point functions in a BCFT (in AdS/CFT)
Fermionic duality relations (simple examples)
Bosonic duality relations (simple examples)

Some technicalities (towards a proof, singular roots)

Outlook



The Gaudin matrix and the norm
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The Gaudin matrix and overlaps

Integrable boundary states |B):

(B|u) computable in closed form

Matrix product states  deLeeuw, ck, zarembo ‘15
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Valence Bond States
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Integrability understood in a scattering picture
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\ Conserved parity-odd charges of spin chain



Integrable overlaps and the Gaudin determinant
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Gaudin matrix has block structure
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Integrable Super Spin Chains (of type SU(M|N))
Cartan matrix M,;, Dynkin labels ¢,, a,b=1,... M + N —1

Bethe equations
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AdS/CFT: N=M=4



QQ-system

Q-functions and QSC opt

imal language for the spectral problem

of writing the Bethe equations

Many equivalent ways
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How does the Gaudin matrix fit into this?



Example: SU(2|1) super spin chain

Encodes conformal single trace operators built from fields
X (bosonic), ¥y,¥, (fermionic) in NV =4 SYM

Cartan matrix Dynkin label 1
O—

e ek
-1 0] 0 Qi,u;, K1 Q2,vj, Ko

— { graded

permutation

Baxter polynomials

Kl K2
Ql(u) — H(u _ ui), QQ (U) — H(U — Uj) (plus two trivial ones)
1=1 j=1

Vacuum: |¥1¥,...),  Excitations at level 1 and 2: Wy, X



AdS/dCFT and overlaps in SU(2|1) spin chain

T
Constable, Myers
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One-point functions

C
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Propagators for complex scalars: X = ¢; + i¢4, etc.
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One-point functions and VBS

Feynman diagrams

ST

0/ o
Leading for large-N Sub-leading for large-N
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A Web of Dualities: Ex: SU(1|2)
12]1 25 @Q-functions, 2 fixed
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(Change of variables
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Fermionic Duality: Ex: SU(2|1) ot Zaremmba 05
B — o 11 . [
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Change of variables (from v; to v;)

K> roots v

b
Q () = QF (v) = Q2(v) - Qa(v)

kg :Kl —K2 — 1 roots @j
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Transformation formula: Ex: SU(2|1)

O— - - -&
Kl Kz Kl [?2

K, Ky even — I/(VQ = K1 — K5 — 1 odd, i.e. ©’s contain a single zero
Det GG still factorizes

Qf (u) — Q7 (u) = iK1 uQs(u) Qvg(u), with reduced Baxter polynomials

. C.K., Mdller,
Found numerically zarembo 20

N Q2(0)Q2(0)
D= K, Q1(%) - Analytical proof in progress

Notice:
e Holds semi-on-shell (the {u;, —u;}’s can be chosen at random)
e Covariance of overlap formula which involves Q2(0)D

e Factor K signals that a hws is mapped to a descendent

de Leeuw, Ipsen, C.K.,
Vardinghus, Wilhelm 17



Fermionic dualities in general

Allow one to move between any two Dynkin diagrams of a super Lie alge-
bra (of type SU(N|M))
O & O

Involve a fermionic node and its neighbours only

Changes the nature of neighbouring nodes X) «+— O
and the connections VRS-

Dualized node non-momentum carrying = Dynkin labels unchanged
(Dynkin label equal to zero)

Dualized node momentum carrying — Dynkin labels change

0 V+1 -®
V| — | =V | for
0 VFl —R®---




Dualizing a non-momentum-carrying node
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Dualizing a momentum-carrying node

O X O
K K., K,
s M 0 ] 0 ] m € {—1,+1}
M=1m 0 —m|, qg= V], n2 € {0, —2m1 }
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NB: K, odd or K; odd requires regularization



Bosonic Dualities: A warm-up example: SU(2)

Q2 =1 Bosonic duality eqn.

Q2 = K=L-K+1
(States beyond the equator)

Qp = u”

Dual roots at 0, i% call for regularization of det G

After regularization:  Roots at 0,3 left out in Q

_ nl)4

D= AL, x Q0)Q (/2) D A, = (2"n!)
Q(i/2)Q(0) 2(2n)! (2n +1)!

Overlaps with VBS Duality invariant



Bosonic dualities in general

Involve a bosonic node and its neighbours only

—0—=~0

[ m r

Do not change the Dynkin diagram or the Dynkin labels

Momentum carrying bosonic node

D=A _ — D

Non-momentum carrying bosonic node

D=A _ LA D
ot B2 fm (£) Qm (0)

Overlaps in the scalar SO(6) sector invariant (up to pre-factor)



C.K., Mller,

A note on singular roots Zarembo 21

Ky,

(VBS|u) # 0: momentum carrying roots: {u;, —u;};-%

auxiliary roots: {v;, —v;};-% , possibly U{0}

Duality transformations introduce dual roots at 0, &

N |-

Need to know the Gaudin matrix, i.e. GG+ for these cases
Root at zero: Naturally included in G

Roots at :t%: Lead to divergencies in G, G_
Can be regulated by impurities and
removing row and column of singular root from G_

Special challenge for bosonic dualities: det é+ =0

Regulated by removing the entries of the zero root



Summary

* We have determined the transformation properties of the Gaudin
super determinants under all fermionic and bosonic dualities

encoded in the QQ-system.

* We can translate overlap formulas between any two Dynkin
diagrams (Kostya’s talk).



Open Problems

Analytical proof of the duality transformation formulas
Easy to state --- difficult to prove

Understand the pre-factors in the transformation formulas

Understanding the rationale for the regularization
in the bosonic case

Express the overlaps entirely in terms of Q-functions
and treat the overlaps by means of the Quantum Spectral Curve



Thank you



