

Tau Analysis: Tau in 3 leptons & 3 prongs

Group Meeting

Robin Leboucher *leboucher@cppm.in2p3.fr*

Belle

Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced Tau+Tau- Pairs (2010)

http://arxiv.org/abs/1001.3221

&

Updated search for Lepton Flavor Violating tau Decays into Three Leptons (Belle note)

Robin Leboucher

Belle Method Event selection

- <u>3X1 Topology</u>: Signal τ decay into 3 leptons, Tag τ into one charged track (4 charged tracks with zero net charge) and add any nb of photons and neutrinos.
- <u>6 signal modes:</u> $\tau^- \rightarrow e^-e^+e^-$, $\mu^-\mu^+\mu^-$, $e^-\mu^+\mu^-$, $\mu^-e^+e^-$, $\mu^-e^+\mu^-$, $e^-\mu^+e^-$; mode by mode selection optimization.
- Events selections: fiducial volume $-0.866 < cos\theta < 0.956$; $p_T > 0.1 \ GeV/c$ for charged tracks; $E_{\nu} > 0.1 \ GeV$ for photons; $|dr| < 0.5 \ cm$ and $|dz| < 3 \ cm$.
- Event's particle separated in 2 hemispheres (plane perpendicular to the trust axis).
- <u>Particle identification</u>: Electrons $P(e) = \frac{L_e}{L_e + L_x} > 0.9$ for p > 0.3 GeV/c (eff 91%, pion misid 0.5%), Muons $P(\mu) = \frac{L_\mu}{L_\mu + L_\pi + L_K} > 0.9$ for p > 0.6 GeV/c (eff 85%, pion misid 2%).
- <u>Missing particles</u>: Ensure to be neutrinos $\vec{p}_{miss} > 0.4 GeV/c$ and is **in fiducial volume**, must be in tag side $0.0 < cos \theta_{tag-miss}^{CM} < 0.98$ (reject Bhabha, $\mu\mu \& \gamma$ conversion); $m_{tag} < 1.78 \ GeV/c^2$. Robin Leboucher 3-Jun-21

Belle Method Background rejection

- Reject $q\overline{q}$ bkg by: Thrust magnitude cuts 0.90 < T < 0.96 for eee, 0.90 < T < 0.97 else, Total Visible energy $5.29 < E_{vis}^{CM} < 9.5 GeV$ (3 leptons, tag prong & photons).
- <u>Reject γ conversion and Bhabhas</u>: ee invariant mass $M_{ee} > 0.2 GeV/c^2$ for eee & μee ; Tag side prong P(e) < 0.1 for eee & $e\mu\mu$ (also suppress bhabha); Reject events if tag track is in ECL barrel/endcap gaps.
- <u>Reduce Bhabha & $\mu\mu$ bkg with material interaction</u>: $p_{tag}^{CM} < 4.5 \ Gev/c$ for eee & μee .

	Mode	Hadronic tag	Leptonic tag
ect generic ττ & <i>q</i> q bkg:	$\tau^- \to \mu^- \mu^+ \mu^-$	$p_{\rm miss} > -3.0 \ m_{\rm miss}^2 - 1.0$	$p_{\rm miss} > -2.5 \ m_{\rm miss}^2$
	$\tau^- ightarrow \mu^- e^+ e^-$	$p_{\rm miss} > 3.0~m_{\rm miss}^2 - 1.5$	$p_{\rm miss}>1.3~m_{\rm miss}^2-1.0$
	$\tau^- \to e^- \mu^+ \mu^-$		
	$\tau^- \to e^- e^+ e^-$	$p_{\rm miss} > -3.0 \ m_{\rm miss}^2 - 1.0$	$p_{\rm miss} > -2.5 \ m_{\rm miss}^2$
		$p_{\rm miss}>4.2~m_{\rm miss}^2-1.5$	$p_{\rm miss}>2.0~m_{\rm miss}^2-1.0$
	$\tau^- \to e^+ \mu^- \mu^-$	not applied	not applied
	$\tau^- ightarrow \mu^+ e^- e^-$		

• Optimisation by looking in the number of events needed to obtain a 99% CL evidence (N⁹⁹_{obs}); the number of bkg (N_{BG}).

Robin Leboucher

Rej

Belle Method Signal Region & Backgoround estimation

Signal region define in (M_{3l} , ΔE) 2D plane:

 $M_{3l} \& \Delta E$ resolutions are extracted from asymmetric gaussian fits on signal MC samples; Then elliptical SR are optimised to have the minimum area with 90% of signal (after all selections).

Mode	$\sigma_{M_{3\ell}}^{\text{high}} (\text{MeV}/c^2)$	$\sigma_{M_{3\ell}}^{\text{low}} \; (\text{MeV}/c^2)$	$\sigma_{\Delta E}^{\text{high}}$ (MeV)	$\sigma_{\Delta E}^{\rm low} ({\rm MeV})$
$\tau^- \to \mu^- \mu^+ \mu$	-5.0/5.2	5.1/5.4	13.5/13.9	16.1/16.7
$\tau^- \rightarrow e^- e^+ e^-$	- 5.3/5.3	7.2/7.6	12.9/15.6	26.6/24.9
$\tau^- \to e^- \mu^+ \mu$	6.0/5.2	5.0/6.2	12.5/14.3	19.6/20.9
$\tau^- \rightarrow \mu^- e^+ e$	- 5.0/5.3	6.9/7.0	13.2/13.5	22.8/23.4
$\tau^- \to e^+ \mu^- \mu$	- 5.1/5.0	6.6/6.6	12.8/14.0	20.7/20.9
$\tau^- \to \mu^+ e^- e$	- 5.5/5.8	6.4/6.9	13.8/16.5	24.0/23.7

Blind Analysis:

Signal efficiency evaluated outside SR.

Bkg number is done with loser PID cut, in M_{3l} sidebands (excluding SR) and then extrapolate to the SR assuming bkg is uniform.

Belle Method Results

Systematic Uncertainties:

- lepton identification 2.2% (e) & 2.0% (μ);
- Charged track finding 1.0%;
- Electron veto (eee, eµµ) same as lepton ID;
- MC stat & Luminosity (0.5-0.9)% and 1.4%.

Branching	fraction:	Br	<	$\frac{s_{90}}{2\varepsilon N_{TT}}$	-;
<u> </u>		<u> </u>		$2\varepsilon N_{\tau\tau}$	

Mode	ε (%)	$N_{ m BG}$	$\sigma_{ m syst}$ (%)	$N_{\rm obs}$	$\mathcal{B}(\times 10^{-8})$
$\tau^- ightarrow e^- e^+ e^-$	6.0	0.21 ± 0.15	9.8	0	<2.7
$\tau^- \to \mu^- \mu^+ \mu^-$	7.6	0.13 ± 0.06	7.4	0	<2.1
$\tau^- \to e^- \mu^+ \mu^-$	6.1	$0.10 {\pm} 0.04$	9.5	0	<2.7
$\tau^- \to \mu^- e^+ e^-$	9.3	0.04 ± 0.04	7.8	0	<1.8
$\tau^- \to e^+ \mu^- \mu^-$	10.1	0.02 ± 0.02	7.6	0	<1.7
$\tau^- \to \mu^+ e^- e^-$	11.5	0.01 ± 0.01	7.7	0	<1.5

 s_{90} the 90% CL upper limit of signal events (include sys uncertainties) obtained by the POLE program $N_{\tau\tau}$ the number of $\tau\tau$ pairs from 782fb⁻¹

Babar

Limits on τ Lepton-Flavor Violating Decays in Three Charged Leptons (2010) http://arxiv.org/abs/1002.4550

&

Improved Limits on the Lepton-Flavor Violating Decays $\tau^- \rightarrow l^- l^+ l^-$ (2007)

https://arxiv.org/pdf/0708.3650.pdf

Robin Leboucher

Babar Method Event selection

- <u>3X1 Topology</u>: Signal τ decay into 3 leptons, Tag τ into one charged track (4 charged tracks & zero **net charge**) and add any nb of photons and neutrinos.
- <u>6 signal modes:</u> $\tau^- \rightarrow e^-e^+e^-$, $\mu^-\mu^+\mu^-$, $e^-\mu^+\mu^-$, $\mu^-e^+e^-$, $\mu^-e^+\mu^-$, $e^-\mu^+e^-$
- <u>Particle identification</u>: Particle's identified as **e** or μ with invariant mass & energy equal to τ parent; <u>Electrons</u>: <u>Multivariate algo</u> $\rightarrow E/p$, dE/dx & calorimeter shower's shape; (eff 91%, pion misid 2.4%), <u>Muons</u>: BDT algo \rightarrow IFR hit's number, interaction lengths traversed's number, calorimeter energy deposition, inner trackers info (for low momentum $\mu < 500 \ MeV/c$); (eff 77%, pion misid 2.1%).
- Events selections: pointing to a common region consistent with $\tau\tau$ production; polar angles in the colorimeter acceptance range.
- Event's particle separated in 2 hemispheres (plane perpendicular to the trust axis): Signal side with exactly 3 tracks with $m < 3.5 \ GeV/c^2$, Tag side with exactly 1 tracks and neutral energy deposits.
- γ conversion reduction: Two couples of oppositely charge required $m_{inv} > 30 \ MeV/c^2$ for eee & eµµ, $m_{inv} > 20 \ MeV/c^2$ else.

Babar Method Background rejection

- Main bkg suppression performed by the particle identification.
- Tag selection: momentum $p < 4.8 \ GeV/c$; τ mass $0.2 < m_{inv} < 3.0 \ GeV/c^2$ for eee, µee, eµµ & $0.1 < \overline{m_{inv}} < 3.5 \ GeV/c^2$ else.

• <u>Reject Bhabha:</u> Reject events where two opposite sign tracks is consistant with γ conversion, $M_{ee} < 200 \ MeV/c^2$ for all except $M_{ee} < 300 \ MeV/c^2$ for $\mu e\mu$; For eee & $e\mu\mu$, 1 prong track required energy deposit inconsistent with e, and not identified as e; For e μ e, μ ee & $\mu\mu\mu$, 1 prong track not identified as μ ; Missing momentum, $p_{miss} > 300 \ MeV/c$ for eee & $e\mu\mu$, $p_{miss} > 200 \ MeV/c$ for μ ee & $\mu\mu\mu$ & $p_{miss} > 100 \ MeV/c$ for $\mu e\mu$ & $e\mu e$; Opening angle, $cos(\theta_{13}) > -0.995$ for eee & $cos(\theta_{13}) > -0.997$ for μ ee.

- For μee & $e\mu\mu$, both tracks can satisfied e & μ PID, so both mass hypothesis 2D plane are computed but only one hypothesis fall into $\Delta M_{rec} \in]-600$, $400[MeV/c^2 \& \Delta E \in]-700$, 400[MeV
- Remaining Bkg are low multiplicity $q\overline{q}$ events, QED events (Bhabha or $\mu\mu$ depending on mode) & generic $\tau\tau$; With distinct distributions in the 2D plane ($\Delta M_{rec}; \Delta E$).

Babar Method Event selection

• Signal Region define in 2D plane ($\Delta M_{ec}; \Delta E$):

with $\Delta E \equiv E_{rec}^{CM} - E_{beam}^{CM}$ and $\Delta M_{ec} \equiv M_{ec} - m_{\tau}$ where $M_{ec}^2 \equiv \frac{E_{beam}^{CM}^2}{c^4} - \frac{|\vec{p}_{3l}^{CM}|^2}{c^2}$ Optimise by minimizing expected UL when no LFV signal is present, expected UL estimated with MC & data control samples.

- Blind analysis is performed.
- Expected Bkg rate determine by fitting in $(\Delta M_{ec}; \Delta E)$ separatly for each modes (crosschecks with sidebands method).

• $q\overline{q}$ bkg:

Rotated (ΔM_{ec} ; ΔE) call ($\Delta M'$; $\Delta E'$), rotation parameters included in fit params;

 $\Delta M'$ pdf = bifurcated Gaussian;

 $\Delta E' \text{ pdf} = (1 - x/\sqrt{1 + x^2})(1 + ax + bx^2 + cx^3)$, with $x = (\Delta E' - d)/e$.

generic ττ bkg:

 $(\Delta M^{\prime\prime}; \Delta E^{\prime\prime}), \Delta M^{\prime\prime} = cos\beta_1 \Delta M_{ec} + sin\beta_1 \Delta E \& \Delta E^{\prime\prime} = cos\beta_2 \Delta E + sin\beta_2 \Delta M_{ec};$ $\Delta M^{\prime\prime} \text{ pdf} = 2 \text{ Gauss sum (common mean);}$ $\Delta E^{\prime\prime} \text{ pdf same as } q\overline{q}.$

2		
Mode	∆ <i>M_{rec}</i> (MeV/c 2)	Δ <i>Ε</i> (MeV)
μμμ	-25, 30	-200, 100
eee	-30, 30	-300, 100
eμμ	-30, 30	-300, 50
μee	-30, 30	-300, 50
μeμ	-30, 30	-350, 100
eμe	-30, 30	-350, 100

Robin Leboucher

Babar Method Event selection

• QED bkg:

Rotated 2D Plane;

eee, eµe & eµµ samples produced by passing all selection except lepton tag veto but identified as μ (eµe) or e;

- μ ee: tag tracks identified as μ and $0.5 < m_{1prong} < 2.5 \ GeV/c^2$ and $p_{1prong} > 4.8 GeV/c$;
- $\Delta M'$ pdf = 3rd order polynomial;
- $\Delta E'$ pdf = Crystal Ball;

Systematics Uncertainties on SGN EFF:

- PID dominates error 1.8-7.8%;
- Tracking efficiency 1%;
- All other smaller than 0.1%.

Systematics Uncertainties on BKG ESTIMATION:

Estimated from fits;

Mode	Eff. [%]	$N_{ m bgd}$	$\mathrm{UL}_{90}^{\mathrm{exp}}$	$N_{\rm obs}$	$\mathrm{UL}_{90}^{\mathrm{obs}}$
$e^{-}e^{+}e^{-}$	8.6 ± 0.2	0.12 ± 0.02	3.4	0	2.9
$\mu^-e^+e^-$	8.8 ± 0.5	0.64 ± 0.19	3.7	0	2.2
$\mu^+e^-e^-$	12.7 ± 0.7	0.34 ± 0.12	2.2	0	1.8
$e^+\mu^-\mu^-$	10.2 ± 0.6	0.03 ± 0.02	2.8	0	2.6
$e^{-\mu^{+}\mu^{-}}$	6.4 ± 0.4	0.54 ± 0.14	4.6	0	3.2
$\mu^{-}\mu^{+}\mu^{-}$	6.6 ± 0.6	0.44 ± 0.17	4.0	0	3.3

$UL_{90}^{e \times p} = N_{UL}^{90} / 2 \varepsilon L \sigma_{\tau \tau}$ by Cousins & Highland method

 «to varying PDF parameters by their uncertainties, alternative functional forms are used to determine the uncertainty on the expected background yield in the SR»

Robin Leboucher

3-Jun-21

12