Brainstorming on $\tau {\rightarrow} \ IV^{\scriptscriptstyle 0}$ analyses

Laura Zani

Marseille meeting, 2021/06/03

Outline

- Existing results: •
 - Belle (https://arxiv.org/pdf/1101.0755.pdf)
 - Babar (https://arxiv.org/pdf/0904.0339.pdf)
- Belle II strategy: ullet
- Offline (belleLike) selection ork in prograss cellaneous: work in prostess Miscellaneous: resolutions, topology •

Belle $\,\tau \rightarrow IV^{\scriptscriptstyle 0}$ analysis

(ref. here)

- Analyze 854/fb and set most stringent limits
- exploit ΔE , M_{IV0} to define signal region (extracted from fitted resolutions)
 - Reconstruct events with exactly 4 tracks within detector acceptance -0.8660 $<\!cosTheta<0.9563\;$ and of minimum pt>0.1 dr $<\!0.5$, dz $<\!3\;cm+3x1\;$ topology selection wtr Thrust axis
 - any number of photons (E $_{\gamma}{>}0.1$ GeV) [BelleII reco in steering python here]
 - PID > 0.9(0.95) [missing PID variables in my nutples...] and p > 0.6(1) for electron(muon)
 - $^-$ Electrons corrected for Bremsstrahlung emission including photon momenta within 0.05 rad cone \rightarrow we applied Guney's optimal bremCorrection with E_{th}= 20 MeV and opening angle 0.15 rad (3x Belle angle)
 - Kaon veto on pion candidates applied + additional electron veto on pion candidates combined into V0 to reject photon conversions [→ orthogonal PID list]
 - |pT_miss| > 0.5 (0.7) from muon(electron *) channel and direction pointing to the tag side (*see table*). *tighten for eRho0 channel: |pT_miss| > 1.5
 - Thrust > 0.9

	V^0	Invariant mass (GeV/c^2)	$\cos \theta_{\rm tag-miss}^{\rm CM}$ for $\tau \to \mu V^0$ (eV	^{.0})
	$ ho^0$	$0.587 < M_{\pi\pi} < 0.962$	[0.0, 0.85] ([0.0, 0.96])	
	ϕ	$1.009 < M_{KK} < 1.031$	[0.0, 0.88] ([0.0, 0.97])	
	ω	$0.757 < M_{\pi\pi\pi} < 0.808$	$[0.0, 0.88] \ ([0.0, 0.97])$	
K	$C^{0*}(\bar{K}^{0*})$	$0.842 < M_{K\pi} < 0.956$	$[0.0, \ 0.87] \ ([0.0, \ 0.96])$	

• Tag side selections:

- tau_tag_invM ${<}m_{\tau}$
- 2 (1) photons allowed with hadronic (leptonic) tag
- proton veto [\rightarrow currently missing protonID variables/recommendations]
- For muon channel and muon tag, $p_{\scriptscriptstyle tag}{}^{\scriptscriptstyle CMS} < 4~\text{GeV}$
- eV0 mode specific selections to reject background from taupairs, with $\tau \to h \pi^{_0} (\to \gamma \gamma) \nu$ decays + photon conversion + e- in the ECL gap mis-identified as hadron (final states lhh as for signal)
 - $^-$ Assign electron mass to one of the pion and recompute Meh invariant mass, requiring Meh $> 0.2 \mbox{ GeV}$

Belle $\tau \to IV^{\scriptscriptstyle 0}$ analysis: signal yield extraction

- Define elliptical signal region
 - in ΔE , M_{IV0} space:
 - asymmetric Gaussian fits to signal distributions to extract $\Delta E,~M_{\scriptscriptstyle IV0}$ resolutions
 - Compute $\sigma = (\sigma_{\mbox{\tiny low}} + \sigma_{\mbox{\tiny high}})/2$
 - [–] Define ellipse axes as 3σ length, ellipse center and inclination to maximize signal efficiency normalized to the area \rightarrow blind this region!
 - $^-$ Retain $\pm 20\sigma$ region for background studies and estimates
- Electron channel $\tau \to \mathrm{e} V^{_0}\!\!:$
 - ⁻ Dominant background from two-photon processes
 - [–] Small background contamination after selection: count the number of events in $\pm 5\sigma_{\Delta E}$ outside the blinded elliptical signal region
 - Assume it's flat along invM axis and extrapolate inside the signal region

TABLE II: Summary of $M_{\ell V^0}$ and ΔE resolutions ($\sigma_{M_{\ell V^0}}^{\text{high/low}}$ (MeV/ c^2) and $\sigma_{\Delta E}^{\text{high/low}}$ (MeV)). Here σ^{high} (σ^{low}) means the standard deviation on the higher (lower) side of the peak.

Mode	$\sigma^{ m high}_{M_{\ell m V^0}}$	$\sigma^{\rm low}_{M_{\ell \rm V} 0}$	$\sigma^{\rm high}_{\Delta E}$	$\sigma_{\Delta E}^{\rm low}$
$\tau \to \mu \rho^0$	6.1	5.4	16.0	21.9
$\tau \to e \rho^0$	6.7	5.7	15.6	25.1
$\tau \to \mu \phi$	3.7	3.8	14.2	19.9
$\tau \to e \phi$	4.1	4.5	14.0	22.0
$\tau \to \mu \omega$	7.0	8.9	25.7	29.0
$\tau \to e \omega$	8.6	9.7	21.1	37.1
$\tau \to \mu K^{*0}$	4.9	5.2	15.8	21.2
$\tau \to e K^{*0}$	5.7	6.7	15.6	25.1
$ au o \mu \bar{K}^{*0}$	4.9	5.2	15.8	21.3
$\tau \to e \bar{K}^{*0}$	5.2	5.7	15.6	24.6

- Muon channel $\tau \rightarrow \mu V_0$:
 - $^-$ dominant background from continuum ee \rightarrow qq and tau pairs production
 - Only for $\mathbf{\tau} \rightarrow \mathbf{\mu} \mathbf{\rho}$ fit side-band region in data in $M_{_{\rm IVO}}$ distribution using sum of exponential and first-order polynomial, looking only at $_{\pm} 5\sigma_{\Delta E}$
 - $^ \tau \rightarrow \mu \phi$ tau paris component due to pion contaminatoin, mis-identified as kaons

Belle $\tau \rightarrow IV^0$ analysis: results

Search on 854 fb⁻¹, most competitive UL

- Expected 1 bkg event inside the signal region for tau \rightarrow muPhi, muK^(*), 0 for the other channels
- Unblinding confirms expectation \rightarrow no excess ٠
- Compute 90% CL upper limits on number of signal ٠ events (s_{00}) accounting for systematic uncertainties using POLE program without conditioning, https://arxiv.org/pdf/physics/0302057.pdf

$$\mathcal{B}(\tau \to \ell V^0) < \frac{s_{90}}{2N_{\tau\tau}\varepsilon},$$

- $B(\tau \rightarrow eV_0) < (1.8 4.8) \times 10^{-8}$ $B(\tau \rightarrow \mu V_0) < (1.2 8.4) \times 10^{-8}$

TABLE III: The signal efficiency (ε), the number of expected background events (N_{BG}) estimated from the sideband data, total systematic uncertainty (σ_{syst}), the number of observed events in the signal region $(N_{\rm obs})$, 90% C.L. upper limit on the number of signal events including systematic uncertainties (s_{90}) , 90% C.L. upper limit on the observed branching fraction (\mathcal{B}_{obs}) for each individual mode.

Mod	e	ε (%)	$N_{\rm BG}$	$\sigma_{\rm syst}$ (%)	$N_{\rm obs}$	s ₉₀	$\mathcal{B}_{\rm obs}~(\times 10^{-8})$
$\tau^- ightarrow \mu$	$\iota^- \rho^0$	7.09	1.48 ± 0.35	5.3	0	1.34	1.2
$\tau^- \to \epsilon$	$e^- \rho^0$	7.58	0.29 ± 0.15	5.4	0	2.17	1.8
$\tau^- \rightarrow \mu$	$u^-\phi$	3.21	0.06 ± 0.06	5.8	1	4.24	8.4
$\tau^- \rightarrow 0$	$e^-\phi$	4.18	0.47 ± 0.19	5.9	0	2.02	3.1
$\tau^- \rightarrow \mu$	$u^-\omega$	2.38	0.72 ± 0.18	6.1	0	1.76	4.7
$\tau^- \rightarrow c$	$e^-\omega$	2.92	0.30 ± 0.14	6.2	0	2.19	4.8
$ au^- ightarrow \mu^-$	$-K^{*0}$	3.39	0.53 ± 0.20	5.5	1	3.81	7.2
$\tau^- ightarrow e^-$	$-K^{*0}$	4.37	0.29 ± 0.14	5.6	0	2.17	3.2
$\tau^- ightarrow \mu^-$	\bar{K}^{*0}	3.60	0.45 ± 0.17	5.5	1	3.90	7.0
$\tau^- ightarrow e^-$	\bar{K}^{*0}	4.41	0.08 ± 0.08	5.6	0	2.34	3.4

- Results improved thanks to larger statistics and better specific background rejection:
 - Di-baryon production for muon channel (proton veto)
 - $\tau \to h^-\pi_0(\to \gamma\gamma)\nu$ with photon conversion for electron channel

BaBar $\ \tau \rightarrow IV^{_0}$ analysis

(ref. here)

- 451 fb⁻¹ on + off resonance, setting limits down to (2.6-19) x 10^{-8}
- 3x1 topology to reduce qq contamination:
 - 4 tracks with total null charge from IP within laboratory angular acceptance
 - Reject events with invM of pairs of oppositely charged tracks < 0.03 GeV (photon conversions veto)
 - Thrsut axis separation and leptonic and hadronic PID applied on signal side
- Selection optimize separately per each channel (table) to provide smallest BF UL in the background only hyposthesis
- Reject radiative dilepton final states asking non collinear 1and 3-prong momentum vectors
- Veto electron tag for $e\rho$ search

Channel	$e\phi$	$\mu\phi$	$e\rho$	μho	eK^*	μK^*	$e\overline{K}^*$	$\mu \overline{K}^*$
$m_{hh} \min$	1.000	1.005	0.6	0.6	0.8	0.82	0.80	0.78
$m_{hh} \max$	1.040	1.035	0.92	0.96	1.0	0.98	1.04	1.00
$m_{1-pr} \min$	0.3	0.4	0.3	0.3	0.3	0.2	0.3	-
m_{1-pr} max	2.5	2.5	2.5	2.5	2.5	2.5	2.5	-
p_T^{miss} min	0.4	0.3	0.4	0.4	0.4	0.4	0.4	0.4
p_T^{cms} min	0.5	-	-	-	0.6	-	0.3	-
n_{1pr}^{γ} max	4	3	3	1	-	3	-	2
n_{3pr}^{γ} max	3	1	2	1	-	2	-	1
	Channel m_{hh} min m_{hh} max m_{1-pr} min m_{1-pr} max p_T^{miss} min p_T^{cms} min n_{1pr}^{γ} max n_{3pr}^{γ} max	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

- Signal region in ($\Delta E{\equiv}E^*_{_{rec}}{-}E^*_{_{beam}},\,\Delta M{=}M_{_{EC}}{-}m_{_{T}}$) plane
- * ISR tails for $\Delta M{>}0$ and $\Delta E <\!0$
- define signal boxes (SB) in ΔM, ΔE plane by minimizing the expected BF upper limits → estimate by comparing simulations and data yields in sideband regions (Large Boxes, LB)

TABLE II: Signal Box boundaries; ΔM is in units of GeV/ c^2 and ΔE in units of GeV.

Mode	$e\phi$	e ho	eK^*	$e\overline{K}^*$	$\mu\phi$	μho	μK^*	$\mu \overline{K}^*$
ΔM_{\min}	-0.02	-0.02	-0.02	-0.015	-0.008	-0.01	-0.01	-0.008
$\Delta M_{\rm max}$	0.015	0.02	0.02	0.02	0.01	0.015	0.01	0.01
ΔE_{\min}	-0.13	-0.10	-0.15	-0.125	-0.09	-0.06	-0.08	-0.08
$\Delta E_{\rm max}$	0.10	0.06	0.08	0.06	0.06	0.04	0.04	0.06

BaBar $\tau \rightarrow IV^{\circ}$ analysis: signal yield extraction (ref. here)

- Blind signal boxes (SB) in ΔM , ΔE plane in data
- 3 main source of background:
 - ⁻ Continuum uds (evenly distributed in ΔM , ΔE plane)
 - ⁻ ccbar production (peaking at positive ΔM)
 - [–] Tau pair decays (peaking at negative ΔM , ΔE
 - (two-photon processes negligible)
- Extract expected events in SB by fitting Grand-Sideband (GS) regions in data, GS = LB SB, with 2D pdf and extrapolating N_{bkg} in SB
- Pdf shapes (combinations of Gaussians, polynomial and CristalBall shapes) modeled on simulation, as well as ΔM, ΔE correlation (angle)

TABLE II: Signal Box boundaries; ΔM is in units of GeV/c^2 and ΔE in units of GeV.

Mode	$e\phi$	e ho	eK^*	$e\overline{K}^*$	$\mu\phi$	μho	μK^*	$\mu \overline{K}^*$
ΔM_{\min}	-0.02	-0.02	-0.02	-0.015	-0.008	-0.01	-0.01	-0.008
$\Delta M_{\rm max}$	0.015	0.02	0.02	0.02	0.01	0.015	0.01	0.01
ΔE_{\min}	-0.13	-0.10	-0.15	-0.125	-0.09	-0.06	-0.08	-0.08
$\Delta E_{\rm max}$	0.10	0.06	0.08	0.06	0.06	0.04	0.04	0.06

TABLE III: Efficiency estimate, number of expected background events ($N_{\rm bgd}$), number of observed events ($N_{\rm obs}$), observed upper limit at 90% CL on the number of signal events ($N_{\rm UL}^{90}$), expected branching fraction upper limit at 90% CL ($\mathcal{B}_{\rm exp}^{90}$), and observed branching fraction upper limit at 90% CL ($\mathcal{B}_{\rm UL}^{90}$). $\mathcal{B}_{\rm exp}^{90}$ and $\mathcal{B}_{\rm UL}^{90}$ are in units of 10^{-8} .

Mode	ε	$N_{ m bgd}$	$N_{\rm obs}$	$N_{ m UL}^{90}$	$\mathcal{B}^{90}_{\mathrm{exp}}$	$\mathcal{B}^{90}_{\mathrm{UL}}$
$e\phi$	6.43 ± 0.16	0.68 ± 0.12	0	1.8	5.0	3.1
$\mu\phi$	5.18 ± 0.27	2.76 ± 0.16	6	8.7	8.2	19
$e\rho$	7.31 ± 0.18	1.32 ± 0.17	1	3.1	4.9	4.6
μho	4.52 ± 0.41	2.04 ± 0.19	0	1.1	8.9	2.6
eK^*	8.00 ± 0.19	1.65 ± 0.23	2	4.3	4.8	5.9
μK^*	4.57 ± 0.36	1.79 ± 0.21	4	7.1	8.5	17
$e\overline{K}^*$	7.76 ± 0.18	2.76 ± 0.28	2	3.2	5.4	4.6
$\mu \overline{K}^*$	4.11 ± 0.32	1.72 ± 0.17	1	2.7	9.3	7.3

• efficiencies between 4-8%, evaluated on simulations

BaBar $\tau \rightarrow IV^0$ analysis: results

- unlind SB in (Δ M, Δ E) plane in data and compare counted N_{obs} to N_{bkg} expected extracted from previous fits
- Set 90% CL upper limits on N_{sig} by using the POLE calculator (Feldman-Cousins approach), including systematics
- Compute 90% CL upper limits on BF:
 - ^ $B_{_{90}}\text{\tiny UL}{=}N_{_{90}}\text{\tiny UL}{/}(2\epsilon\ L\sigma_{_{\tau}\,\tau})\ \rightarrow\ \text{all in the range}\ (2.6{-}19){\times}10^{_{-8}}$

	E	Belle ∖	/s. Ba	Bar			and Belle II 2
Measured:	Eff [%]		N _{bkg}	N _{bkg}			
moue.	Belle	BaBar	Belle	BaBar	Belle	BaBar	
$\tau \to \mu \rho$	7.09	4.52	1.48	2.04	0	0	•
$\tau \to \mathrm{e}\rho$	7.58	7.31	0.29	1.32	0	1	
$\tau \to \mu \phi$	3.21	5.18	0.06	2.76	1	6	
$\tau \to \mathrm{e}\phi$	4.18	6.43	0.47	0.68	0	0	

Event reconstruction

- Reconstruction script in tau_IV0 repository here
 - Good tracks selection: |dz| < 3.0 and |dr| < 1.0
 - MuonID applied (also as veto on pions), EoverP selection for pion and electrons (pionID and electronID not recommended yet)

 \rightarrow correctBremsBelle('e+:cBrems', 'e+:pid', 'gamma:notPi0forBrem', multiplePhotons=True, minimumEnergy=0.020, angleThreshold=0.150, path=main)

- $^-\,$ Reconstructed V0 mass within loose window around rho0 Mass: '0.47 < M < 1.07 '
- Signal tau vertex fit (TreeFit, with mass and IP constraints)

This reconstruction is meant to be **flexible** to reconstruct both the final topology cases 3x1 or $2x2 \rightarrow$ depends on the rho0 polarization and the direction of flight of the daughters

Reconstructed events

 $\tau \rightarrow l\rho$, 3x1

Electron channel

Muon channel

	gen <u>lumi</u> [/fb]	evt_reco	eff <u>reco</u>	sample:	evt_reco	eff_reco
signal [2M evt]		279175	0.1396	signal [2M .evt]	269253	0.1346
taupair	200	895412		taupair	1.54E+06	
qqbar	200	978670		qqbar	999264	
charged	200	32232		charged	29465	
mixed	200	24337		mixed	23731	
ee	20	17574		ee	41	
eeee	200	1916		eeee	2	
mumu	200	2293		mumu	877	
eemumu	200	5279		eemumu	3193	
eeKK	1000	204		eeKK	51	
eepipi	1000	1375		eepipi	963	
eepp	1000	102		eepp	92	

Discriminant variables, 3x1 topology

11

Missing momentum variables

Offline selection: belleLike

//vector meson invariant mass cut 0.587 < V0_signal_InvM < 0.962 Thrust > 0.9 //missing momentum in fiducial region -0.8660 < cos(missingMomentumOfEvent_theta) < 0.9563 // constrain photons on the tag side to reject qq ((nPhotons_tag < 3 && dmID_tag==1211) || (nPhotons_tag < 2 && (dmID_tag==113 || dmID_tag==111))) tau_tag_InvM < 1.777</pre>

Electron channel (dmID_signal == 311)

• lepton_signal_p > 0.6

 $//\ensuremath{\mathsf{missing}}$ momentum pointing to the tag side

- 0 <
 (cos(missingMomentumOfEventCMS_ theta-track_tag_theta_CMS) < 0.85
- $|\mathsf{pT}_{miss}| > 1.5$

Muon channel (dmID_signal == 313)

• lepton_signal_p > 1.

 $//{\sf missing}$ momentum pointing to the tag side

- 0<
 cos(missingMomentumOfEventCMS_thetatrack_tag_theta_CMS) < 0.96
- |pT_miss| > 0.5
- * track_tag_p_CMS < 4 GeV && dmID_tag == 113

) σ regions	n (1.777, 0) GeV)				
	$ au ightarrow \mu ho$	C		$\tau \to \mathrm{e}\rho$			
	σ [MeV]	Min [GeV]	Max [GeV]	σ [MeV]	Min [GeV]	Max [GeV]	
M _{IV0}	5.75	1.662	1.892	6.2	1.653	1.901	
ΔE	18.95	-0.379	0.379	20.35	-0.407	0.407	
$\pm 5\sigma_{\rm AE}$	[-0.0947	75, 0.09475]	[-0.10175, 0.10175]			

$\pm 3\sigma$ regions (Center in (1.777, 0) GeV): signal box

	$ au o \mu ho$			$\tau \to {\rm e}\rho$			
	σ [MeV]	Min [GeV]	Max [GeV]	σ [MeV]	Min [GeV]	Max [GeV]	
M _{IV0}	5.75	1.75975	1.7943	6.2	1.7584	1.7956	
ΔE	18.95	-0.05685	0.05685	20.35	-0.061	0.061	

Selection results

au
ightarrow Iho, 3x1

Bella			(Selecti	on resu	lts		WORK IN Dr	
, 3x1		Electro	n chan	nel		М	uon cł	nannel	Sress.
	gen <u>lumi</u> [/fb]	evt_reco (eff_reco	evt_select && in5sigmaSideBand	evt_select && in5sigmaSidebBand [Scaled to target [umi]	evt_reco	eff <u>reco</u>	evt_select && in5sigmaSideBand	evt_select && in5sigmaSidebBand [Scaled to target [umi]
signal [2M evt]		279175	0.1396	6		269253	3 0.1346	5	
taupair	200	895412		1	4.27	1.54E+06	5	20	85
aabar	200	978670		10	42.7	999264	1	69	295
charged	200	32232		0	0	29465	5	0.00	0 0
mixed	200	24337		C	0	23731		0.00	0
ee	20	17574		0	0	41		0.00	0
eeee	200	1916		C	0	2	2	0.00	0 0
mumu	200	2293		C	0	877	7	0.00	0 0
eemumu	200	5279		C	0	3193	3	0.00	0
eeKK	1000	204		0	0	51		0.00	0 0
eepipi	1000	1375		0	0	963	3	0.00	0
eepp	1000	102		0	0	92	2	0.00	0 0

Target lumi: 854/fb

14

Electron channel, 3x1

Miscellaneous: resolutions

• Rho0 polarization results in ~ 4% of events with 2x2 topology \rightarrow investigate discriminating kinematics variables (lepton_p_CMS very promising)

Invariant Mass resolutions: Belle2 composite pdf

Belle results:

5.4

high

 ΔE

16.0

21.9

high

 $\sigma_{M_{\ell V}0}$

6.1

Mode

 $\tau \to \mu \rho^0$

- Event reconstruction (no further selections, 2M generated evt)
- Model: Crystal Ball Func + Gaussian_core + Gaussian_broad

Invariant Mass resolutions: Belle model

Invariant Mass resolutions: Belle2 composite pdf

Invariant Mass resolutions: Belle2 composite pdf, eChannel

- Event reconstruction + Belle-like selections (2M generated evt):
 - lepton_signal_p > 0.6 (1.0) if lepton = electron(muon) && nPhotons_tag < 2
 - V0_signal_InvM >0.587 && V0_signal_InvM<0.962 && cos(missingMomentumOfEvent_theta) < 0</pre>
- Model: Crystal Ball Func + Gaussian_core + Gaussian_broad

Invariant Mass resolutions: Belle2 composite pdf, muChannel

- Event reconstruction + Belle-like selections (2M generated evt):
 - lepton_signal_p > 0.6 (1.0) if lepton = electron(muon) && nPhotons_tag < 2 -
 - V0_signal_InvM >0.587 && V0_signal_InvM <0.962 &&</p> cos(missingMomentumOfEvent_theta) < 0

pull

Model: Crystal Ball Func + Gaussian core + Gaussian broad ٠

Belle results:

 σ

low.

5.4

Mevo

high

 ΔE

16.0

low

21.9

high

 $\sigma_{M_{\ell V}0}$

6.1

6.7

Mode

 $\tau \to \mu \rho^0$