

MLFermiDwarfs

A data-driven framework for dark matter constraints from dwarf galaxies

C. Eckner, F. Calore, P. D. Serpico, B. Zaldívar

E-OSSR Onboarding Presentation

1st October 2021

ESCAPE - The European Science Cluster of Astronomy & Particle Physics ESFRI Research Infrastructures has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement n° 824064.

"MLFermiDwarfs" in a nutshell

- Framework to derive constraints on the (velocity-independent) dark matter pair-annihilation cross-section utilising Fermi-LAT gamma-ray data of Milky Way dwarf spheroidal galaxies (indirect detection), which features a machine learning-based assessment of astrophysical background emission (intrinsic + extrinsic) from these objects.
- Maximum likelihood approach with dark matter content of dwarfs (J-factor) and/or ML estimated astrophysical background as nuisance parameters
- For some classical dwarfs, data-driven (data on stellar kinematics) J-factor probability density functions are provided.
- Code entirely written in python 3 and relatively well-known packages like *scikit-learn*.

✤ Use cases:

- Deriving an estimate for the astrophysical gamma-ray background of a Milky Way dwarf spheroidal galaxy in the Fermi LAT energy range that goes beyond the usual assumptions defined by the Fermi LAT collaboration.
- Deriving constraints on, e.g. WIMP or user-defined dark matter model (dark matter parameters including a user-selected list of dwarf galaxies.
- Performance of the approach already demonstrated in two publications:
 - <u>F. Calore et al. JCAP10 (2018) 029</u>
 - <u>A. Alvarez et al. JCAP09 (2020) 004</u>

Why "MLFermiDwarfs"?

Connection between dark matter, gamma rays and dwarf galaxies:

Funded by the European Union's Horizon 2020 - Grant N° 824064

Why "MLFermiDwarfs"?

General assumptions for such analyses:

- dwarfs have a negligible intrinsic gamma-ray background
- "accidental" background might occur along the line of sight (diffuse emission from the MW's plane, nearby extended Galactic sources, sub-threshold galactic and extragalactic sources

Fermi LAT collaboration's solution:

—> independent determination of background in a 15° × 15° region around each dwarf using pre-defined models for Galactic diffuse emission, isotropic background, re-fit of known localised gamma-ray sources, etc.

Is that sufficient, where to improve?

- new spatially-dependent contributions (unresolved sources, alternative diffusion mechanisms) may provide unequal performances in different regions of the sky
- no guarantee that background is consistently determined from one region to another
- somewhat arbitrary choice of background window
- estimation of (theoretical) systematic uncertainty due to background modelling errors is hard or unclear

How does "MLFermiDwarfs" work?

We propose an alternative approach:

-> data-driven and agnostic about the physics underlying the background

GOAL: create a probability density function describing the gamma-ray background at each position in the sky based on real data samples and optimised with machine learning tools

Step 1: define the average angular size of dwarf (r ~ 0.5°), tile the entire sky in samples non overlapping with known dwarfs, bright point sources (3FGL catalog) and the Galactic plane and each other (isotropic selection)

How does "MLFermiDwarfs" work?

Step 2: build global PDF estimator $\hat{\mathscr{F}}$ based only on data (parameterised PDF according to E. Parzen '61, D. Specht '88,'90,'91, well-known theorems in statistics/Machine Learning community proving convergence to "true" PDF)

$$\hat{\mathscr{F}}(\overrightarrow{x},b) = \frac{1}{N} \sum_{i=1}^{N} K_{\sigma}(\overrightarrow{x} - \overrightarrow{x_{i}}) g_{\zeta}(b - b_{i})$$
spatial location kernel
photon count kernel

spatial location kernel, smoothing parameter σ

ESCAPE

photon count kernel, smoothing parameter ζ

- —> Smoothing parameters may be local (depending on position) but here chosen to be global for simplicity.
- —> We take a Gaussian for K and a log-normal for g (choice is not essential since the convergence to the true PDF for large N is assured under weak and general hypotheses of continuity and smoothness).
- Step 3: maximise the (global) likelihood on the training background sample w.r.t. the smoothing parameters

$$\ln \hat{\mathscr{F}}_{tot}(\vec{x}, b) = \sum \ln \left[\frac{1}{N-1} \sum_{i \neq j} K_{\sigma}(\vec{x}_i - \vec{x}_j) g_{\zeta}(b_i - b_j) \right] \qquad \{\hat{\sigma}, \hat{\zeta}\} = \operatorname{argmax} \left\{ \ln \hat{\mathscr{F}}_{tot}(\vec{x}, b) \right\}$$

How does "MLFermiDwarfs" work?

Step 4: Use the optimised pdf to predict the expected background counts (and higher moments) at each dwarf position (CAVEAT: the pdfs will not be Gaussian)

ESCAPE

$$\widehat{\ln \mathbf{b}} = \frac{\sum_{i=1}^{n} K_i \ln b_i}{\sum_{i=1}^{n} K_i} \qquad \widehat{\operatorname{Var}}(\ln b)_{\sigma,\varsigma} = \varsigma^2 + \left[\frac{\sum_{i=1}^{n} K_i (\ln b_i)^2}{\sum_{i=1}^{n} K_i} - \left(\frac{\sum_{i=1}^{n} K_i \ln b_i}{\sum_{i=1}^{n} K_i}\right)^2\right]$$

Step 5: Constructing (stacked) Poisson likelihood function (terms per dwarf *d* and energy bin *e*) and deriving upper limits on the dark matter annihilation cross-section via the log-likelihood ratio test statistic (adopted from standard Fermi-LAT analyses, e.g. arXiv:1310.0828)

$$\mathscr{L}_{d,e}(\lambda_{d,e}, \log_{10} J_d, \ln b_{d,e}) = \frac{\lambda_{d,e}^{c_{d,e}} e^{-\lambda_{d,e}}}{c_{d,e}!} \mathcal{N}(\log_{10} J_d) \mathcal{B}(\ln b_{d,e})$$

background and J-factor as nuisance
$$\lambda_{d,e} = \lambda_{d,e}(\langle \sigma v \rangle, m_{\rm DM}, \log_{10} J_d, \ln b_{d,e}) = 10^{\log_{10} J_d} \langle \sigma v \rangle f_{d,e}(m_{\rm DM}) + e^{\ln b_{d,e}}$$

signal parameter

Additional technical details

1. Pdf of dwarf J-factors in two ways (user may decide which to use):

$$\mathcal{N}(\log_{10} J_d) = \frac{1}{\sqrt{2\pi}\sigma_d^J} \exp\left[-\left(\frac{\log_{10} J_d - \overline{\log_{10} J_d}}{\sqrt{2}\sigma_d^J}\right)^2\right]$$

Log-normal; spectroscopic measurements (0.5° circular ROI)

values adopted from previous publications: [1611.03184, 1604.05599, 1511.06296]

Largest dwarfs have been reanalysed in the light of their stellar kinematics (Spencer et al. 2017, 2018) and photometry (Flewelling et al. 2016)

—> J-factor pdfs directly from data-analysis, no imposed NFW profile

2. Background pdf parameter optimisation per energy bin?

The optimisation of σ and ζ is only done with respect to the first energy bin (0.67 GeV to 0.89 GeV) —> rather mild dependence + low photon count at energies > 20 GeV

Not a limitation of the method, just a useful trick to reduce the # of distributions to profile over. Real bounds should be actually a little bit weaker because of this neglected effect ...

Code structure and workflow

- Package is optimised for use from the command line enabling a quick check of the viability of a user-defined DM model but functions can be imported and used within scripts.
- Version 1 is based on the Fermi-LAT data set prepared and utilised in <u>A. Alvarez et al. JCAP09 (2020) 004</u>, i.e. ~10 years (SOURCE event class, Pass8, 500 MeV to 500 GeV, logarithmic energy binning into 24 bins: later summed to form 6 macro bins)
 - -> background pdf is already optimised and kernel parameters are fixed
 - -> a user only needs to select the dwarf spheroidal galaxies and DM model to derive upper limits on the model parameters
- Future versions of the code will allow the user to provide their own LAT data set and to perform the pdf optimisation w.r.t. to this data set
 - -> already in the making
 - -> needs some additional stability checks (not any LAT data will work, some minimal requirements must be met)

Code structure and workflow

Successive call of scripts which perform the likelihood profiling and calculation of upper limits.

Required input:

Code structure and workflow

*Apart from the necessary primary input, minor adjustments may be coordinated by additional **parser arguments**. The main input files are also specified as parser arguments.

Available switches:

	-c. either J or JB —> likelihood profiling is either w.r.t. J-factors or J
	factors + background
	-j: Boolean —> if True use custom pdf for classical dwarfs else use the
	Gaussian pdf with values from the input table
	-svmin/svmax: min/max annihilation cross-section for the evaluation of
	the likelihood (needs to capture the expected range)
	A few additional switches to point to the path of the required data files; only relevant if their default path must be changed.
_	- <mark>-type:</mark> "all"/"single" —> plots either a single line of the calculated upper
	limits as a function of mass or includes the limits
	from each individual dwarf used for stacking

S likelike and wasfiling is aith an usual. I factors and

Software Development

* Software development on gitlab:

https://gitlab.in2p3.fr/francesca.calore/mlfermidwarfs

- Documentation: README jupyter script explaining the functionality with examples
- * Software license: MIT License
- Test and CI/CD:
 - -> examples in the jupyter notebook
 - -> default provided DM annihilation spectra include a table with PPPC spectra
- Operating system, compilation environment:
 - -> Linux, MacOS, Windows (later versions that accept custom LAT data sets may require healpy, which does not work well within Windows)
 - -> python 3, setup.py available

Dependencies:

- -> several python packages are required: scikit-learn, scipy, iminuit, astropy
- -> package requirements defined in setup.py
- * Hardware requirements: none

Interface options: envisaged interface to micrOMEGA

OSSR Integration

What is available?

source code, python setup script, tutorial jupyter notebook, default data to run the analysis and to reproduce the figures of

A. Alvarez et al. JCAP09 (2020) 004

What will be on-boarded (source code, container, test workflow incl. data)?

all of the above

Are there open points?

- -> Again, future versions will allow the user to perform the full analysis based on a user-defined LAT data set.
- -> Refined treatment of background optimisation (e.g. based on physically motivated models) may become available.

What is the user story?

Typical story: A theoretical physicists develops a new particle dark matter model which happens to produce — through some interactions — a flux of gamma rays. They may want to check which part of their theories parameter space is excluded by LAT dwarf data. With a table of gamma-ray spectra, they can obtain the desired answer.

Time for a short demo

The mentioned jupyter notebook serves as an ideal starting point for a demo ...

E-OSSR Onboarding Presentation

Funded by the European Union's Horizon 2020 - Grant N° 824064

Discussion Time

Thank you for your attention!

Are there any questions?

