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“MLFermiDwarfs” in a nutshell
❖ Framework to derive constraints on the (velocity-independent) dark matter pair-annihilation 

cross-section utilising Fermi-LAT gamma-ray data of Milky Way dwarf spheroidal galaxies 
(indirect detection), which features a machine learning-based assessment of astrophysical 
background emission (intrinsic + extrinsic) from these objects.


❖ Maximum likelihood approach with dark matter content of dwarfs (J-factor) and/or ML 
estimated astrophysical background as nuisance parameters


❖ For some classical dwarfs, data-driven (data on stellar kinematics) J-factor probability density 
functions are provided.


❖ Code entirely written in python 3 and relatively well-known packages like scikit-learn. 


❖ Use cases: 
— Deriving an estimate for the astrophysical gamma-ray background of a Milky Way dwarf 
     spheroidal galaxy in the Fermi LAT energy range that goes beyond the usual assumptions 
     defined by the Fermi LAT collaboration. 
— Deriving constraints on, e.g. WIMP or user-defined dark matter model (dark matter 
     parameters including a user-selected list of dwarf galaxies.


❖ Performance of the approach already demonstrated in two publications: 
— F. Calore et al. JCAP10 (2018) 029 
— A. Alvarez et al. JCAP09 (2020) 004

https://iopscience.iop.org/article/10.1088/1475-7516/2018/10/029
https://iopscience.iop.org/article/10.1088/1475-7516/2020/09/004
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Why “MLFermiDwarfs”?
❖Connection between dark matter, gamma rays and dwarf galaxies: 

 
 
 
 
 
 
 
 
 
 

❖ratio of DM/baryonic matter in dwarfs almost 1  
to 3 order(s) of magnitude larger than in the Milky  
Way + low background 
—> “clean DM laboratories”: can constrain       
thermal WIMPy DM up to O(100 GeV) 

1698 V. Springel et al.

Figure 13. Images of substructure within substructure. The top left-hand panel shows the dark matter distribution in a cubic region of side 2.5 × r50 centred on
the main halo in the Aq-A-1 simulation. The circles mark six subhaloes that are shown enlarged in the surrounding panels, and in the bottom left-hand panel,
as indicated by the labels. All these first generation subhaloes contain other, smaller subhaloes which are clearly visible in the images. SUBFIND finds these
second generation subhaloes and identifies them as daughter subhaloes of the larger subhaloes. If these (sub)subhaloes are large enough, they may contain a
third generation of (sub)subhaloes, and sometimes even a fourth generation. The bottom panels show an example of such a situation. The subhalo shown on
the bottom left-hand side contains another subhalo (circled) which is really made up of two main components and several smaller ones (bottom, second from
left-hand side). The smaller of the two components is a third generation substructure (bottom, third from left-hand side) which itself contains three subhaloes
which are thus fourth generation objects (bottom right-hand side).

inside radii enclosing a mean overdensity of 1000 times the cos-
mic average value (r250 in our notation) and centred at either sub-
haloes or the main halo. This result has been interpreted by Kuhlen
et al. (2008) to imply that the (sub)subhalo abundance per unit
mass of a subhalo should be roughly constant and equal to that of
the main halo. This, however, seems unlikely because, as we have
seen, local substructure abundance is a strong function of radius
in main haloes, with most of the substructure found in the outer
regions.

In this section, we present the first convergence studies ever
attempted for (sub)substructure inside subhaloes in order to assess
the alleged self-similarity of the substructure hierarchy. We begin
by discussing a suitable definition for the outer edge of a subhalo,
which allows us to measure the (sub)substructure mass fractions
of subhaloes in a consistent manner. We then study the number
and mass of subsubhaloes within that radius and compare them
with the expectation from self-similarity. In order to compare with
recent work by Diemand et al. (2008), we also carry out, for a few
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FIG. 1. Constraints on the DM annihilation cross section at 95% CL for the bb̄ (left) and ⌧+⌧� (right) channels derived from
a combined analysis of 15 dSphs. Bands for the expected sensitivity are calculated by repeating the same analysis on 300
randomly selected sets of high-Galactic-latitude blank fields in the LAT data. The dashed line shows the median expected
sensitivity while the bands represent the 68% and 95% quantiles. For each set of random locations, nominal J-factors are
randomized in accord with their measurement uncertainties. The solid blue curve shows the limits derived from a previous
analysis of four years of Pass 7 Reprocessed data and the same sample of 15 dSphs [13]. The dashed gray curve in this and
subsequent figures corresponds to the thermal relic cross section from Steigman et al. [5].

FIG. 2. Comparison of constraints on the DM annihilation cross section for the bb̄ (left) and ⌧+⌧� (right) channels from this
work with previously published constraints from LAT analysis of the Milky Way halo (3� limit) [34], 112 hours of observations
of the Galactic Center with H.E.S.S. [35], and 157.9 hours of observations of Segue 1 with MAGIC [36]. Pure annihilation
channel limits for the Galactic Center H.E.S.S. observations are taken from Abazajian and Harding [37] and assume an Einasto
Milky Way density profile with ⇢� = 0.389 GeV cm�3. Closed contours and the marker with error bars show the best-fit cross
section and mass from several interpretations of the Galactic center excess [16–19].
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Why “MLFermiDwarfs”?
❖  General assumptions for such analyses: 

— dwarfs have a negligible intrinsic gamma-ray background 
— “accidental” background might occur along the line of sight (diffuse emission 
     from the MW’s plane, nearby extended Galactic sources, sub-threshold galactic 
    and extragalactic sources


❖Fermi LAT collaboration’s solution:  
 —> independent determination of background in a  region around each 
        dwarf using pre-defined models for Galactic diffuse emission, isotropic 
        background, re-fit of known localised gamma-ray sources, etc.


❖  Is that sufficient, where to improve? 
 — new spatially-dependent contributions (unresolved sources, alternative 
      diffusion mechanisms) may provide unequal performances in different regions 
      of the sky  
— no guarantee that background is consistently determined from one region to 
     another  
— somewhat arbitrary choice of background window  
— estimation of (theoretical) systematic uncertainty due to background modelling 
     errors is hard or unclear

15∘ × 15∘
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How does “MLFermiDwarfs” work?
❖We propose an alternative approach: 

—> data-driven and agnostic about the physics underlying the background 
 
GOAL: create a probability density function describing the gamma-ray 
            background at each position in the sky based on real data samples and 
            optimised with machine learning tools


Step 1: define the average angular size of dwarf (r ~ 0.5°), tile the entire sky in 
             samples non overlapping with known dwarfs, bright point sources (3FGL 
             catalog) and the Galactic plane and each other (isotropic selection)

✓ Step 1: remove dSphs, known pointlike and 
diffuse sources to build a “background sample”

A sketch of the procedure

spatial location kernel, depending on 
the smooting parameter σ

photon count kernel, depending on 
the smooting parameter ς

In particular, we take a Gaussian for K and a log-normal for g, but this choice is not essential since the convergence 
to the true PDF for large N is assured under weak and general hypotheses of continuity and smoothness 

smoothing can be “local” or “global”, the 
latter chosen in the following for simplicity

ℱ̂( ⃗x , y) = 1
N

N

∑
i=1

Kσ( ⃗x − ⃗x i)gς(y − yi)

✓ Step II: build global PDF estimator based only on data 
(parameterized PDF according to E. Parzen ’61, D. Specht 
’88,’90,’91, well-known theorems in statistics/Machine Learning 
community proving convergence to “true” PDF)

re-sampled according to smoothed dSph distribution
A bit less than 10.000 sample 
positions as “training data” for the 
pdf optimisation (here: 7-year

LAT data set)
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How does “MLFermiDwarfs” work?
Step 2: build global PDF estimator  based only on data 
(parameterised PDF according to E. Parzen ’61, D. Specht ’88,’90,’91, well-known 
theorems in statistics/Machine Learning community proving convergence to “true” PDF)


 

—> Smoothing parameters may be local (depending on position) but here chosen to 
       be global for simplicity.  
—> We take a Gaussian for K and a log-normal for g (choice is not essential since the 
       convergence to the true PDF for large N is assured under weak and general 
       hypotheses of continuity and smoothness).  

Step 3: maximise the (global) likelihood on the training background sample w.r.t. the 
            smoothing parameters 

ℱ̂

ℱ̂( ⃗x , b) = 1
N ∑N

i=1 Kσ( ⃗x − ⃗xi ) gζ(b − bi)
spatial location kernel,  
smoothing parameter σ

photon count kernel,  
smoothing parameter ζ

ln ̂ℱtot( ⃗x , b) = ∑ ln [ 1
N − 1 ∑i≠j Kσ( ⃗xi − ⃗xj ) gζ(bi − bj)] { ̂σ, ̂ζ} = argmax {ln ̂ℱtot( ⃗x , b)}
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How does “MLFermiDwarfs” work?
Step 4: Use the optimised pdf to predict the expected background counts (and 
higher moments) at each dwarf position (CAVEAT: the pdfs will not be Gaussian)


Step 5: Constructing (stacked) Poisson likelihood function (terms per dwarf  and 
energy bin ) and deriving upper limits on the dark matter annihilation cross-
section via the log-likelihood ratio test statistic (adopted from standard Fermi-LAT 
analyses, e.g. arXiv:1310.0828)


d
e

✓ Step IV: The pdf thus optimized on the “rest of the sky” can be used to evaluate the 
background pdf at the dwarf position, or-if one wishes so-its statistical moments, e.g.

Evaluation

(beware, the pdf is far from Gaussian!)

✓ Step V: We construct the likelihood for dwarf d, energy bin e, accounting for Poisson 
statistics of the counts (including both background and signal), the pdf of the 
astrophysical inferred J-factors, and the background pdf 

̂ln ! =
∑n

i=1 Ki ln bi

∑n
i=1 Ki

̂Var(ln b)σ, ς = ς2 +
∑n

i=1 Ki(ln bi)2

∑n
i=1 Ki

− (
∑n

i=1 Ki ln bi

∑n
i=1 Ki )

2

ℒd,e(λd,e, log10 Jd, ln bd,e) =
λcd,e

d,e e−λd,e

cd,e! %(log10 Jd)ℬ(ln bd,e)

λd,e = λd,e(⟨σv⟩, mDM, log10 Jd, ln bd,e) = 10log10 Jd ⟨σv⟩ fd,e(mDM) + eln bd,e

from here on, standard “Fermi-like” (stacking and) profile likelihood method, as described in

M. Ackermann et al.,  Phys. Rev. D 89, 042001 (2014) [arXiv:1310.0828]

 just extended to profiling over the J-factor and background pdf
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background and J-factor as nuisance

signal parameter
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Additional  technical details
1. Pdf of dwarf J-factors in two ways (user may decide which to use):


2. Background pdf parameter optimisation per energy bin?


The optimisation of  and  is only done with respect to the first energy bin (0.67 
GeV to 0.89 GeV) —> rather mild dependence + low photon count at energies > 20 
GeV

σ ζ

Sample of 25 dSphs, all of which have J-factors estimated from spectroscopic measurements
J-factors within circular regions of 0.5º,  with log-normal distribution

Our choice of dSph & J-factors

A. Albert et al. [Fermi-LAT and DES Collaborations], Astrophys. J. 834, no. 2, 110 (2017) [1611.03184]

!(log10 Jd) = 1
2πσJ

d

exp − log10 Jd − log10 Jd

2σJ
d

2

19/25 taken from Table I of 

A. Geringer-Sameth, S. M. Koushiappas and M. Walker,  Astrophys. J.  801, no. 2, 74 (2015) [1408.0002]

in turn based on the analysis

5/25 (Horologium I, Hydra II, Pisces II, Willman I and Grus I) from 

N. W. Evans, J. L. Sanders and A. Geringer-Sameth,  
“Simple J-Factors and D-Factors for Indirect Dark Matter Detection,’' Phys. Rev. D 93, no. 10, 103512 (2016) [1604.05599]

1/25 (Tucana II) from 

M. Walker et al.  Astrophys. J.  819, 53 (2016) [1511.06296]

Log-normal; spectroscopic measurements (0.5° 
circular ROI) 
 values adopted from previous publications:  
[1611.03184, 1604.05599, 1511.06296]  
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Figure 1: New J-factor distributions derived for the 8 “classical” dSphs in the FreeFrom
case (orange histogram) compared with the coreNFWtides case (grey histograms), and the
log-normal distributions commonly used (e.g. by the Fermi-LAT collaboration [20] and in
our previous article [1], dashed-blue), as well as the ones from [21] (dotted-green).

With the same dSph mass profile we can also compute D-factors, i.e. the integral along
the l.o.s. of the DM density, and relevant for predictions of decaying DM signals. We present
the newly determined D-factors in Appendix A for the FreeForm model, and we also compare
them with a previous determination from [22].
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Figure 1: New J-factor distributions derived for the 8 “classical” dSphs in the FreeFrom
case (orange histogram) compared with the coreNFWtides case (grey histograms), and the
log-normal distributions commonly used (e.g. by the Fermi-LAT collaboration [20] and in
our previous article [1], dashed-blue), as well as the ones from [21] (dotted-green).

With the same dSph mass profile we can also compute D-factors, i.e. the integral along
the l.o.s. of the DM density, and relevant for predictions of decaying DM signals. We present
the newly determined D-factors in Appendix A for the FreeForm model, and we also compare
them with a previous determination from [22].
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Largest dwarfs have been reanalysed in the light of 
their stellar kinematics (Spencer et al. 2017, 2018) 
and photometry (Flewelling et al. 2016)

—> J-factor pdfs directly from data-analysis, no  
       imposed NFW profile

Not a limitation of the method, just a useful trick to reduce the # of distributions to profile 
over. Real bounds should be actually a little bit weaker because of this neglected effect … 
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Code structure and workflow

❖Package is optimised for use from the command line enabling a quick check of 
the viability of a user-defined DM model but functions can be imported and 
used within scripts. 

❖Version 1 is based on the Fermi-LAT data set prepared and utilised in  
A. Alvarez et al. JCAP09 (2020) 004, i.e. ~10 years (SOURCE event class, Pass8, 
500 MeV to 500 GeV, logarithmic energy binning into 24 bins: later summed to 
form 6 macro bins) 
—> background pdf is already optimised and kernel parameters are fixed 
—> a user only needs to select the dwarf spheroidal galaxies and DM model to 
     derive upper limits on the model parameters 

❖Future versions of the code will allow the user to provide their own LAT data 
set and to perform the pdf optimisation w.r.t. to this data set 
—> already in the making 
—> needs some additional stability checks (not any LAT data will work, some 
     minimal requirements must be met)

https://iopscience.iop.org/article/10.1088/1475-7516/2020/09/004
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Code structure and workflow

dwarf_profiling.py

dwarf_setlimits.py

dwarf_plot.py

❖Successive call of scripts which perform the likelihood profiling and calculation 
of upper limits.

output created by 
used for

output created by 
used for

Required input:

— machine-readable table of dwarf spheroidal galaxies and 
     their properties (position, J-factor + uncertainty, LAT 
     exposure per energy bin) 
     * comes with code: default_dwarf_summary_table.dat 
     * changes possible (however, LAT data set is fixed!)

     * user declares a selection of these dwarfs by their name, joined with ‘+’

— a definition of the confidence level of the upper limit (test statistic value) 
     default: 95% (TS = 3.84; for one parameter)

—  for the favourite DM model of the user: table format with three 
     columns; DM mass [GeV] — Energy [GeV] — differential spectrum [GeV^-1]

dNγ /dE

— a list of DM masses to scan: .txt file with one mass value per line   
     (for each entry, the likelihood profiling will be done with the spectrum from 
     the input table)
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Code structure and workflow

dwarf_profiling.py

dwarf_setlimits.py

dwarf_plot.py

❖Apart from the necessary primary input, minor adjustments may be coordinated 
by additional parser arguments. The main input files are also specified as parser arguments.

output created by 
used for

output created by 
used for

Available switches:

—c: either ‘J’ or ‘JB’ —> likelihood profiling is either w.r.t. J-factors or J 
                                          factors + background

—j: Boolean —> if True use custom pdf for classical dwarfs else use the 
                              Gaussian pdf with values from the input table

—svmin/svmax: min/max annihilation cross-section for the evaluation of

                              the likelihood (needs to capture the expected range)


A few additional switches to point to the path of the required data files; only relevant if 
their default path must be changed.

-—type: “all”/“single” —> plots either a single line of the calculated upper 
                                               limits as a function of mass or includes the limits 
                                               from each individual dwarf used for stacking 
                                               (individual limits have to be computed first)
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Software Development 

❖ Software development on gitlab: 
https://gitlab.in2p3.fr/francesca.calore/mlfermidwarfs


❖ Documentation: 
README jupyter script explaining the functionality with examples


❖ Software license: MIT License


❖ Test and CI/CD: 
—> examples in the jupyter notebook 
—> default provided DM annihilation spectra include a table with PPPC 
     spectra 


❖ Operating system, compilation environment: 
—> Linux, MacOS, Windows (later versions that accept custom LAT data sets may 
     require healpy, which does not work well within Windows)  
—> python 3, setup.py available


❖ Dependencies: 
—> several python packages are required: scikit-learn, scipy, iminuit, 
     astropy  
—> package requirements defined in setup.py


❖ Hardware requirements: none


❖ Interface options: envisaged interface to micrOMEGA

https://gitlab.in2p3.fr/francesca.calore/mlfermidwarfs
https://lapth.cnrs.fr/micromegas/
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OSSR Integration

❖ What is available? 
      source code, python setup script, tutorial jupyter notebook, default data     
       to run the analysis and to reproduce the figures of 
       A. Alvarez et al. JCAP09 (2020) 004


❖ What will be on-boarded (source code, container, test workflow incl. data)? 
        all of the above


❖ Are there open points? 
      —> Again, future versions will allow the user to perform the full analysis 
            based on a user-defined LAT data set. 
       —> Refined treatment of background optimisation (e.g. based on 
             physically motivated models) may become available.


❖ What is the user story? 
Typical story: A theoretical physicists develops a new particle dark matter 
model which happens to produce — through some interactions — a flux of 
gamma rays. They may want to check which part of their theories parameter 
space is excluded by LAT dwarf data. With a table of gamma-ray spectra, 
they can obtain the desired answer.

https://iopscience.iop.org/article/10.1088/1475-7516/2020/09/004
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Time for a short demo

❖The mentioned jupyter notebook serves as an  
 ideal starting point for a demo …
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Discussion Time

❖Thank you for your attention!


❖Are there any questions?


