

Progress in techniques for optical clock comparisons

Franziska Riedel

Satellite-based comparison techniques

First simultaneous international comparison of optical clocks^{*}:

- planning and execution
- data analysis
- results

Recent improvements & other techniques Summary and outlook

* Details on this campaign can be found in: *Riedel et al.*, *Metrologia 57*, 045005 (2020); https://doi.org/10.1088/1681-7575/ab6745

Introduction – Atomic Clocks

Sr clock (trap) at SYRTE Sr clock (trap) at/BTB

Introduction – Comparison Techniques

Transportable clocks

SYRTE I'Observatoire | PSL

Optical fibers

Satellite-based techniques

Satellite-based comparison techniques

First simultaneous international comparison of optical clocks:

- planning and execution
- data analysis
- results

Recent improvements & other techniques Summary and outlook

Observation modeling

Satellite-based comparison techniques: Geostationary satellites SYRTE I Diservatoire | PSL

Instability depends significantly on signal properties set by the station (signal power, modulation bandwidth)

 \rightarrow try out highest modulation bandwidth possible with equipment

$$\Delta T_{1} = \Delta TS + \tau_{TX,2} + \tau_{U,2} + \tau_{21} + \tau_{D,1} + \tau_{RX,1}$$
$$\Delta T_{2} = -\Delta TS + \tau_{TX,1} + \tau_{U,1} + \tau_{12} + \tau_{D,2} + \tau_{RX,2} \qquad 9/41$$

10 / 41

Satellite-based comparison techniques

First simultaneous international comparison of optical clocks:

- planning and execution
- data analysis
- results

Recent improvements & other techniques

Summary and outlook

SYRTE I'Observatoire | PSL

Measurements at high bandwidth

Each laboratory: modem from same manufacturer

Clock comparison campaign: overview

SYRTE l'Observatoire | PSL

14 / 41

Clock comparison campaign: overview

14/41

SYRTE l'Observatoire | PSL

- TWSTFT with highest bandwidth TFT
- International simultaneous clock comparison between > 2 countries and > 2 optical clocks
- Optical clock comparison for ~ 3 weeks

Unforeseen difficulties: SYRTE Volume Partager | PSL Control of Parta

Satellite-based comparison techniques

First simultaneous international comparison of optical clocks:

- planning and execution
- data analysis
- results

Recent improvements & other techniques Summary and outlook

Calculate relative frequency differences of optical clocks

 $y_{\text{link}}(t) =$

$$x_{\text{link}}(t) = x(\text{HM}_1 - \text{HM}_2) (t)$$
$$x_{\text{link}}(t + \frac{\Delta t}{2}) - x_{\text{link}}(t - \frac{\Delta t}{2})$$

 $= y(HM_1 - HM_2)(t)$

 Δt

 $y_{clock,1}(t) = y(OC_1 - HM_1)(t)$ $y_{clock,2}(t) = y(OC_2 - HM_2)(t)$

$$\rightarrow y(OC_1 - OC_2)(t) = y_{clock,1}(t) - y_{clock,2}(t) + y_{link}(t)$$

But: $y_{\text{clock},x}(t)$ dominated by noise of HM, $y_{\text{link}}(t)$ by phase noise of link

Calculate relative frequency differences of optical clocks

Find a compromise for:

- Minimize phase noise on link data with pre-averaging
- Use only overlapping data to have the HMs cancel out
- Discard as few data as possible

→ obtain $y(OC_1 - OC_2)(t) = y_{clock,1}(t) - y_{clock,2}(t) + y_{link}(t)$

 \rightarrow calculate weighted mean

SYRTE I Diservatoire | PSL

Geometric and relativistic effects: impact on station and satellite

 \rightarrow caused by residual motion of satellite

Variation of path length delay: leads to non-reciprocity of uplink/downlink path → introduce delay in ground stations

Variation of the Sagnac effect

 \rightarrow calculate corrections afterwards,

based on satellite position and velocity $_{\rm 22\,/\,41}$

Ionospheric correction

Ionospheric delay:

SYRTE I Diservatoire | PSL

- frequency dependent
 - $\rightarrow\,$ correction based on up- and downlink frequencies
- take into account TEC (Total Electron Content) and its variation with time

Satellite-based comparison techniques

First simultaneous international comparison of optical clocks:

- *planning and execution*
- data analysis
- results

Recent improvements & other techniques Summary and outlook

Different techniques: agreement

Larger uncertainties: larger contributions by the clocks to u_A and u_B

Satellite-based comparison techniques

First simultaneous international comparison of optical clocks:

- *planning and execution*
- data analysis
- results

Recent improvements & other techniques

Summary and outlook

Recent improvements in satellite-based techniques

Digital modem development:

- Software defined radio (SDR) receiver, code-based digital receiver for daily operations, developed by TL
- Software ranging system (SRS), digital modem capable of both code-based and carrier-based transfer, developed by NICT
- both at low chip rates only so far

First results comparing SRS and SDR with analog TWSTFT and GPS PPP *:

- Comparison between UTC(OP) and UTC(PTB) for approx. 80 days
- Both SDR and SRS are comparable, and better than analog TWSTFT (all in code-based operation)
- GPS PPP shows lower instability at averaging times of up to a few days (uses carrier-phase in addition to code-phase)
- All techniques are limited by the instability of the UTC(k) time scales for long averaging times $\frac{30}{41}$

* From: Thanh Thai et. al, "Code- and carrier-phase based TWSTFT Experiment between INRiM, LNE-SYRTE and PTB", presentation at ION PTTI 2021

Recent improvements in satellite-based techniques

Classical PPP: combination of code and phase ambiguities of phase defined by code noise

IPPP = Integer PPP

 \rightarrow ambiguities for solutions are estimated as integers

From: G. Petit & F. Meynadier, "IPPP links for UTC: comparison to existing techniques", presentation at ION PTTI 2021

+ RF or MW transfer (100 MHz to 10 GHz)

- Amplitude modulation of the optical carrier

- + Direct transfer of an optical frequency
 - Well-suited to optical clocks comparison

Optical fr. reference servo \rightarrow Laser 1.55 µm 32/41

pictures by courtesy of P.E. Pottie/A. Amy-Klein

Observatoire

SYRTE ^r

Basic principle: FIGURE 3. FIBER OPTIC FREQUENCY DISTRIBUTION SYSTEM L. E. Primas *et al.*, Proc. 20th PTTI, Vienna, VA, 29 Nov - 1 Dec 1988(1988)

Noise: different types of amplifiers, repeater stations Availability: balance costs and performance

. . .

SYRTE I Doservatoire | PSL

Optical fibers

Sr-Sr comparison between PTB and SYRTE

 \rightarrow first international fiber link for frequency comparisons

C. Lisdat et al, Nature Comm. 2016 34 / 41

SYRTE I'Observatoire | PSL

Optical fibers

35 / 41

pictures by courtesy of P.E. Pottie/A. Amy-Klein

Optical fibers

pictures by courtesy of P.E. Pottie/A. Amy-Klein

36 / 41

Satellite-based comparison techniques

First simultaneous international comparison of optical clocks:

- planning and execution
- data analysis
- results

Recent improvements & other techniques

Summary and outlook

- Optical clocks new generation of atomic clocks for broad field of applications: remote comparisons necessary!
- First simultaneous international optical clock comparison carried out
 - $\rightarrow\,$ using broadband TWSTFT and GPS PPP
 - → uncertainty limited by links + gaps (HMs do not cancel out perfectly)
 - \rightarrow Uncertainty of low 10⁻¹⁶ achieved, proof of improvements on TWSTFT
- Results for clock types of same type agree with each other
- Results of clocks of different type agree with CIPM 2017 recommended values, but indicate an offset
 - \rightarrow advantage of simultaneity

LNSuitable techniques for optical clock comparisons PL

- Comparison via optical fibers:
 - Best uncertainty/instability,
 - Network set up in Europe, but still limited baselines available
- Transportable optical clocks: limitation in uncertainty and operation due to technical compromises, only subsequent measurements
- Satellite-based techniques:
 - GPS integer PPP (iPPP): lower instability than PPP for averaging times > a few hours
 - TW Carrier Phase: superior to all other satellite-based techniques at short averaging times up to a few hours, but averages with $\tau^{-\frac{1}{2}}$
 - digital TWSTFT with SDR or SRS: some systematic effects can be suppressed, lower instabilities observed at low chip rates
- Other techniques: free space links, VLBI

SYRTE l'Observatoire

Acknowledgements

EURAM

me of EURAMET

ithin EURAMET and the European Union

he EMRP is jointly funded by the EMRP participating countries

• Time Dissemination Group of PTB

PSL 😿

- ITOC consortium (PTB, NPL, LNE-SYRTE, INRIM, MIKES, LUH)
- additional input by TimeTech GmbH, NICT, ORB & BIPM
 + input from SYRTE/BIPM/ORB colleagues for this presentation

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

Thank you for your attention!

