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electronic response  
assuming a convolution of i(t) = dq/dt with the response to a pulse 

q(t) for main, next, 2d next 
1D model 
2D model 

dq/dt*r  
1D model 
2D model 

tmax vs position 

better agreement with 
real data than using q*r  
 
and less differences 
between 1D and 2D 
models 
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a simple way to “solve” the diffusion equation 
on a rectangle with boundary conditions 

•  describe the densities by values ρij on a rectangular grid (xi,yj) 
•  maintain ρ = 0 on the edges of the plate 
•  elsewhere: approximate the laplacian Δρ by 
      (ρi+1,j + ρi-1,j− 2 ρi,j)/Lx

2 +  (ρi,j+1 + ρi,j−1− 2 ρi,j)/Ly
2 

•  make a step as ρi,j +=  Δρi,j  δt/RC 

comments:  
-  the density is « self-smoothing », so after a few steps, the laplacian is very 

well approximated, and inaccuracies in the first steps are  
-  the size of the time step may be increased by using the Rung-Kutta method 
-  in practice: after a short time, the results are in excellent agreement with the 

Fourier expansion  
-  the method may be extended to other geometries, including non-uniform 

conditions (e.g. non-homogeneous value of RC) 
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evolution from a pointlike charge 
(far from the edges) 

t = 50 t = 100 

t = 200 t = 400 

rectangle of 100×50 cells of 1×1 mm        RC = 25 ns/mm2     time step 5 ns (RK method)  
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evolution from a pointlike charge 
(far from the edges) 

t = 50 t = 100 

t = 200 t = 400 

rectangle of 100×50 cells of 1×1 mm        RC = 25 ns/mm2     time step 5 ns (RK method)  
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evolution from a uniform linear distribution 

t = 50 t = 100 

t = 200 t = 400 
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evolution from a random set of pointlike sources 
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the same along an oblique track 
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“analytic” solution with a Fourier expansion  

aim: solve the equation in a rectangle (0,a)×(0,b) with ρ = 0 on the edges 
principle of the computation: 
•  expand ρ(x,y,t) in a Fourier series in x,y  obeying the boundary condition 
      
•  find the dependence in t of each term 
 
•  determine the coefficients from the density at t = 0 
    for example : unit charge at (x0,y0) : ρ(x,y,0) = δ(x-x0) δ(y-y0) 
 
•  obtain the solution : 

        similar to Riegler’s result, except time dependence of the modes  
 
•  integrate over a pad to obtain q(t) 
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             first 10 terms                    sum of 50 terms 
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illustration of the summation in 1D 

t = 50 

t = 100 

t = 200 

t = 400 

edge effect 

leak of charge 
 charge is conserved 
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evolution of the modes for the summation in 2D 
 

(levels of blue for positive values, red for negative ones) 

 β = 1        2           3            4           5 

densities at some  t > 0 
 α = 1        2           3            4           5 

densities at  t = 0 
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modes for the summation in 2D 

initial densities for  α,β = 1 to 5 densities at some  t > 0 
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waveforms for 9 pads in the lower left corner 

uniform track 

q(t) (dq/dt*r)(t) 

evidence for the attenuation on the edges 
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approximation of Riegler’s formula 

With Riegler’s notations: functions f(x, y) in a rectangle (0, a)⇥ (0, b)
with boundary condition f = 0 on the edges (x = 0 or x = a, y = 0 or y = b)
complete orthonormal basis: f

↵,�

= 2 sin(↵⇡x/a) sin(�⇡y/b)/
p
ab (↵ = 1, 2, · · ·1, � = 1, 2, · · ·1)

initial state: a charge Q at (x0, y0): ⇢(x, y, 0) = Q �(x� x0) �(y � y0)
Projecting onto the basis:
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In Riegler’s formula:
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evolution of Riegler coefficients with time 

t = 0 t = 50 

t = 100 t = 200 
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quasi equivalence with « telegraphist » 

α 

α 

α 
β 

β 

β 

1/τ 

h(k,t) without the 
exponential 

τ/τ0 

in a large domain of α,β : 
1/τ is quadratic in α,β 
τ	
 is close to τ0 (value in the 
approximation of small kd1,kd3) 
h(k,t) is practically  cst.exp(-t/τ) 
but:  cst is not 1 
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 model “1.5D” for linear tracks (in infinite plane) 

particular solution 

at t = 0: distribution of charges along x 
axis  over a length L  ! Fourier series density at time t > 0 

good news: at large t, the series can be truncated 

may be computed with a Gauss-Legendre quadrature 
method extended to a double integral 

xi ,yi : zeroes of Legendre polynomials 

lx 

ly 
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a possible ideal fitting strategy 

•  choose as free parameters the Fourier coefficients ck , sk + geometry of the track (y0, dy/dx, 
curvature, t0…) 

•  select a few « significant » points ti in the waveforms of activated pads 
                  (may be different in different pads) 
•  fit the predictions (dq/dt*r)(ti) to the measured values 
•  deduce the geometry of the track + estimation of dE/dx 

technical remarks:


- how many Fourier terms ? Intuitively, no more than the number of rows/columns covered by the 
track; to be tuned… in any case, the series may be truncated at large t 


- the prediction is linear w.r.t. the ck , sk and may be linearized w.r.t the geometrical parameters once 
a good approximation is found


! possible strategy: make a fit of the geometry with existing methods, then linearize and make 
iterations only if really needed (in principle, very fast convergence)


- big amount of computation to obtain the predictions: search for valid approximations ! 


           (e.g. Gauss-Legendre with few points at large t)


- no edge effect in this model: discard the first and last row/column ? find an empirical approximation 
for these pads ? 


-  in principle, the waveforms can be fully exploited (not only tmax, qmax)


but : sensitivity to possible defects of the model; more difficult to tune it from the data 
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let us be optimistic… 

correlations between fitted 
parameters 
Fourier coefficients: 
 c0 ,   c1,s1 ,  c2,s2  …  c14,s14  
 

position of the track 
y, y’ = dy/dx  
 
 

weak correlation between 
geometry and Fourier 
coefficients: 
good news for convergence 

c0  c1 s1 c2 s2 … 
 

y  y’ 
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