

IRN Terascale, Method and Tools Session, July 5, 2021

Probing long lived particles with SModelS v2

Gaël Alguero

LPSC Grenoble & LAPTh Annecy

IRN Terascale, Method and Tools Session, July 5, 2021

On behalf of the SModelS collaboration :

G. A., Jan Heisig, Charanjit K. Khosa, Sabine Kraml, Suchita Kulkarni, Andre Lessa, Philipp Neuhuber, Humberto Reyes-Gonzalez, Wolfgang Waltenberger, Alicia Wongel

IRN Terascale, Method and Tools Session, July 5, 2021

1 Introduction to SModelS

2 From SModelS v1.x to SModelS v2

3 Some physics examples

Results from LHC new physics searches

Introduction to SModelS

IRN Terascale, Method and Tools Session, July 5, 2021

 $2\tau + \varkappa_{T}$ (ATLAS-SUSY-2018-04) $\widetilde{\tau}^{*}_{B,L}\widetilde{\tau}^{*}_{B,L} \rightarrow 2 \times \tau \widetilde{\chi}^{0}_{\star}$ $m(\widetilde{\chi}_1^0)$ [GeV] 250 ATLAS SR-combined √s=13 TeV, 139 fb⁻¹ Expected Limit ($\pm 1 \sigma_{avo}$) All limits at 95% CL 200 Observed Limit (±1 otherwise) 150 100 50 n 350 100 150 200 250 300 400 450 m(t) [GeV]

- Usage of simplified models
- Only 2 or 3 new particles and simple decays
- ulletpprox pprox 100 papers for different final states
- How to constrain a full model with many particles and parameters?

SModelS working principle

Introduction to SModelS

- Based on a general procedure to decompose BSM collider signatures featuring a Z₂-like symmetry into simplified-model topologies
- Large database of simplified-model results (currently 46 ATLAS & 50 CMS searches)
- Generally applicable, also beyond SUSY, provided signal selection acceptances remain ± the same
- Very fast b/c no need for MC simulation
- simultaneous treatment of prompt and LLP constraints

SModelS working principle

Introduction to SModelS

- Based on a general procedure to decompose BSM collider signatures featuring a Z₂-like symmetry into simplified-model topologies
- Large database of simplified-model results (currently 46 ATLAS & 50 CMS searches)
- Generally applicable, also beyond SUSY, provided signal selection acceptances remain ± the same
- Very fast b/c no need for MC simulation
- simultaneous treatment of prompt and LLP constraints

Introduction to SModelS

IRN Terascale, Method and Tools Session, July 5, 2021

 $\sigma_{\rm th} imes BR_1 imes BR_2 imes BR_3(imes A imes \epsilon)$ to compare with $\sigma_{\rm UL}$

Upper limit map (UL)

Introduction to SModelS

Efficiency map (EM)

Introduction to SModelS

SModelS

- Constrains $\sum_{i} A_{i} \epsilon_{i} \times \sigma_{i} \times \prod_{j} BR_{j}$ per signal region
- Can sum contributions from several topologies
- Can compute a likelihood (exclusion confidence level)

SModelS v1.2.4

Database

- 40 ATLAS analyses (5 JSON likelihoods)
- 46 CMS analyses (1 covariance matrix)
- of which 3 LLP results
- 250 ULs and 1700 EMs
- Simplified model description
 - vertices and outgoing particles
 - BSM masses
 - element weight ($\sigma \times BR$)

- Major extension of simplified models description
 - vertices and outgoing particles
 - BSM masses + width
 - element weight ($\sigma \times BR$)
 - + particle object (quantum numbers of intermediate BSM states)
 - \Rightarrow width and spin-dependent results
 - \Rightarrow can treat a larger variety of LLP results (HSCP, disappearing tracks, displaced vertices, ...)

Width-dependent results

From SModelS v1.x to SModelS v2

New results in SModelS v2.1.0

From SModelS v1.x to SModelS v2

- CMS-SUS-19-009 *Analyses at full Run 2 luminosity : 11 + MET
- ATLAS-SUSY-2018-22 * : jets + MET
- ATLAS-SUSY-2016-24 : 2 or 3
- CMS-EXO-19-001 * : nonprompt jets + MET
- ATLAS-SUSY-2016-08 : displaced vertices + MET
- ATLAS-SUSY-2016-32 : HSCPs, R-hadrons
- CMS-EXO-13-006 : HSPCs (+width dependence)
- ATLAS-SUSY-2016-06[†] : disappearing tracks
- CMS-EXO-19-010* : disappearing tracks
- ATLAS-SUSY-2018-14 * : displaced leptons
- *. Analyses at full Run 2 luminosity
- †. Efficiency maps provided by A. Belyaev, F. Rojas-Abbate (2008.08581)

IRN Terascale, Method and Tools Session, July 5, 2021

1 Introduction to SModelS

2 From SModelS v1.x to SModelS v2

3 Some physics examples

The scotogenic model

Some physics examples

IRN Terascale, Method and Tools Session, July 5, 2021

Ernest Ma, Phys.Rev.D73 :077301,2006 [arXiv]

Standard Model extended with

- an inert Higgs doublet
- and right-handed neutrinos

 $\begin{pmatrix} H_1^{\pm} \\ H_1^{0} \end{pmatrix}, \begin{pmatrix} H_2^{\pm} \\ H_2^{0} \end{pmatrix}, \begin{pmatrix} N_1 \\ N_2 \\ N_3 \end{pmatrix}$

• odd under a \mathbb{Z}_2 -symmetry

Field	Generations	$SU(3)_{c}$	$SU(2)_L$	$\mathrm{U}(1)_{\mathrm{Y}}$	\mathbb{Z}_2	
ℓ_L	3	1	2	-1/2	+	
e_R	3	1	1	-1	+	
H_1	1	1	2	1/2	+	
H_2	1	1	2	1/2	_	
N	3	1	1	0	—	

$$H_1 \xrightarrow{\mathbb{Z}_2} H_1$$

$$H_2 \xrightarrow{\mathbb{Z}_2} -H_2$$

- radiative neutrino masses
- provides different DM candidates
 - different production mechanisms (freeze-in, freeze-out, ...)
 - probe with the appropriate LHC signatures (prompt, long-lived, ...)

IDM/scotogenic with scalar DM

Some physics examples

IDM/scotogenic with scalar DM

- random scan over
 - $m_{H^\pm}, m_{H^0}, m_{A^0}$ $\lambda_2=0.1, \lambda_L=10^{-10}$
- cross-sections with micrOMEGAs
- S and T constraints
- DM relic density as upper bound
- direct detection limits rescaled according to relic density
- H^{\pm} decay into pions

$$\Gamma_{\pi^{\pm}}=rac{g^4f_{\pi^2}^2}{64\pi m_W^4}\Delta m^2\sqrt{\Delta m^2-m_{\pi^+}^2}$$

A. Belyaev et al [arXiv]

IDM/scotogenic with scalar DM

- random scan over
 - $m_{H^\pm}, m_{H^0}, m_{A^0}$ $\lambda_2=0.1, \lambda_L=10^{-10}$
- cross-sections with micrOMEGAs
- S and T constraints
- DM relic density as upper bound
- direct detection limits rescaled according to relic density
- H^{\pm} decay into pions

$$\Gamma_{\pi^{\pm}}=rac{g^4f_{\pi^2}^2}{64\pi m_W^4}\Delta m^2\sqrt{\Delta m^2-m_{\pi^+}^2}$$

A. Belyaev et al [arXiv]

Scotogenic with fermionic DM

- RH neutrino N₁ as DM candidate
- small DM mass and small coupling
- freeze-in production of DM

$$\Omega_{N_1} h^2 \approx 0.12 \left(\frac{M_1}{10 \text{ keV}}\right) \left(\frac{100 \text{ GeV}}{m_{H_2}}\right) \left(\frac{y_1}{2 \times 10^{-9}}\right)^2$$

- $m_{A^0/H^0} > m_{H^{\pm}} > m_{N_1}$ • H^{\pm} is long-lived and decays to $I^{\pm}N_1$
- A. Hessler et al [arXiv]

Gaël Alguero

E. Molinaro et al [arXiv]

Scotogenic with fermionic DM

Some physics examples

- grid IDM scan over m_{H^+} with micrOMEGAs $\Delta m = m_{H^0,A^0} - m_{H^{\pm}}$ fixed $\lambda_2 = 10^{-2}, \lambda_L = 10^{-2}$
- then scan over m_{N_1}

 $\Gamma_{H^{\pm} \to N_{1} e^{\pm}} = \frac{m_{H^{\pm}} |Y_{e1}^{\nu}|^{2}}{16\pi} \left(1 - \frac{m_{N_{1}}^{2}}{m_{H^{\pm}}^{2}}\right)^{2}$

E. Molinaro et al [arXiv]

Scotogenic with fermionic DM

Some physics examples

- grid IDM scan over m_{H^+} with micrOMEGAs $\Delta m = m_{H^0,A^0} - m_{H^{\pm}}$ fixed $\lambda_2 = 10^{-2}, \lambda_L = 10^{-2}$
- then scan over m_{N_1}

 $\Gamma_{H^{\pm} \to N_{1} e^{\pm}} = m_{H^{\pm}} |Y_{e^{\pm}}^{\nu}|^{2} \left(\int_{-\infty}^{\infty} m_{N}^{2} \right)$

 $\frac{m_{H^\pm}|Y_{e1}^\nu|^2}{16\pi}\left(1-\frac{m_{N_1}^2}{m_{H^\pm}^2}\right)^2$

E. Molinaro et al [arXiv]

Electroweakinos in the MSSM

Some physics examples

IRN Terascale, Method and Tools Session, July 5, 2021

r > 1700 Allowed ATLAS-SUSY-2016-06 (TDTM1F,TDTM2F) 600 · ATLAS-SUSY-2019-08 (TChiWH) CMS-SUS-17-004 (TChiWZ) 500 -ATLAS-SUSY-2018-06 (TChiWZ) ATLAS-SUSY-2018-32 (TChiWW) (GeV) CMS-SUS-17-004 (TChiWZoff) 400 CMS-EXO-19-010 (TDTM1F,TDTM2F) ATLAS-SUSY-2016-24 (TChiWZ) $m_{\chi_1^0}$ (300 -ATLAS-SUSY-2017-03 (TChiWZ) CMS-SUS-13-006 (TChiWZoff) ATLAS-SUSY-2013-12 (TChiWZ) 200 100 -0. 100 200 300 400500 600 700 800 0 $m_{\tilde{\chi}_{*}^{\pm}}$ (GeV)

- random scan over $M_1, M_2, \mu, \tan \beta = 10$
- generated with SOFTSUSY
- cross-sections with PROSPINO
- simultaneously prompt and LLP constraints

Electroweakinos in the MSSM

Some physics examples

ATLAS-SUSY-2016-06

- random scan over $M_1, M_2, \mu, \tan \beta = 10$
- generated with SOFTSUSY
- cross-sections with PROSPINO
- simultaneously prompt and LLP constraints

- What's new in SModelS v2.1.0
 - extended description of simplified models (quantum numbers and widths)
 - 7 new LLP results (3 displaced, 2 DT, 2 HSCPs)
- Physics examples
 - scotogenic scalar DM
 - \Rightarrow disappearing tracks and HSCPs
 - scotogenic fermionic DM
 - \Rightarrow displaced leptons and HSCPs
 - MSSM electroweakinos
 - \Rightarrow disappearing tracks and prompt

Thanks for your attention !

Backup : scotogenic scalar potential

Some physics examples

IRN Terascale, Method and Tools Session, July 5, 2021

$$V = m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 + \frac{1}{2} \lambda_1 (H_1^{\dagger} H_1)^2 + \frac{1}{2} \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) + \frac{1}{2} \lambda_5 [(H_1^{\dagger} H_2)^2 + H.c.],$$

(1)

H^{\pm} width

Gaël Alguero

Probing long lived particles with SModelS v2

Backup : $H^{\pm} \rightarrow \mu^{\pm} N_1$

Some physics examples

Backup : SModelS-pyhf interface

arXiv:2009.01809 (pyhf interface)

(2)

$$p(n, a|\eta, \chi) = \prod_{\substack{c \in channels}} \prod_{b \in bins} \operatorname{Pois}\left(n_{cb}|\nu_{cb}(\eta, \chi)\right) \prod_{\substack{\chi \\ \chi \\ \text{Constraints}}} c_{\chi}(a_{\chi}|\chi)$$

relates the observed events and auxiliary data (n, a) to the free and constrained parameters (η, χ)

$$\nu_{cb}(\eta,\chi) = \sum_{s \in samples} \nu_{scb}(\eta,\chi) = \sum_{s \in samples} \underbrace{\prod_{\kappa} \kappa_{scb}(\eta,\chi)}_{\text{Mujtiplicative modifiers}} \begin{pmatrix} \nu_{scb}^{0}(\eta,\chi) + \underbrace{\sum_{\Delta} \Delta_{scb}(\eta,\chi)}_{\text{Additive modifiers}} \end{pmatrix} (3)$$

ATL-PHYS-PUB-2019-029