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The scalar sector and the self-coupling
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■ The scalar sector: cornerstone of the SM


■ Brout-Englert-Higgs mechanism: a scalar potential 
with a v.e.v. ≠ 0 originates a spontaneous breaking 
of the electroweak symmetry


■ Properties of the scalar sector ⟺ BEH potential 
shape (λ) ⟺ self-coupling


■ Still largely unexplored at the LHC
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HH production: gluon fusion
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NNLO FT-approx 
JHEP 1805 (2018) 059

HH production ⟹ direct determination 
of Higgs trilinear coupling λHHH

■ Gluon fusion: dominant production mode


■ Large destructive interference 
⟹ tiny cross section


■ Self-coupling information both total and 
differential cross section (strong mHH 
dependence on λHHH)

□ analyses must be optimised for a variety of 
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(d) Associated production with top-quarks: qq̄/gg → tt̄HH

Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.
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with ŝ and t̂ denoting the partonic Mandelstam variables. The triangular and box form
factors F#, F! and G! approach constant values in the infinite top quark mass limit,

F# →
2

3
, F! → −

2

3
, G! → 0 . (6)

The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F#, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process
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ŝ

)

, (5)
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ŝ

)

, (5)
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ŝ
∓

√

1−
4M

2
H

ŝ
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ŝ2 (

1
−
2 M

2Hŝ
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with ŝ and t̂ denoting the partonic Mandelstam variables. The triangular and box form
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F# →
2

3
, F! → −
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The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F#, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process
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derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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HH production: vector boson fusion

■ Very rare production mode

□ moderate sensitivity to λ


■ Unique sensitivity to the 
VVHH interaction

□ κ2V ≠ κV in e.g. composite 

Higgs models
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Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.
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with ŝ and t̂ denoting the partonic Mandelstam variables. The triangular and box form
factors F#, F! and G! approach constant values in the infinite top quark mass limit,

F# →
2

3
, F! → −

2

3
, G! → 0 . (6)

The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F#, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process
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with ŝ and t̂ denoting the partonic Mandelstam variables. The triangular and box form
factors F#, F! and G! approach constant values in the infinite top quark mass limit,

F# →
2

3
, F! → −

2

3
, G! → 0 . (6)

The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F#, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process

6

(a) gg double-Higgs fusion: gg → HH
H

H

Hg

g

Q

H

H

g

g

Q

(b) WW/ZZ double-Higgs fusion: qq ′→ HHqq ′
q

q ′

q

q ′
V ∗

V ∗ H
H(c) Double Higgs-strahlung: qq̄ ′→ ZHH/WHH

q

q̄ ′

V ∗

V

H

H

g

g

t̄

t

H
H

q

q̄

g

(d) Associated production with top-quarks: qq̄/gg → tt̄HHFigure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron

colliders.
where

t̂± = − ŝ
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Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.
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For the numerical evaluation we have used the publicly available code HPAIR [44] in
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Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.
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ŝ

2

(

1− 2
M2

H

ŝ
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with ŝ and t̂ denoting the partonic Mandelstam variables. The triangular and box form
factors F#, F! and G! approach constant values in the infinite top quark mass limit,

F# →
2

3
, F! → −

2

3
, G! → 0 . (6)

The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F#, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process
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FIG. 1: Cartoon of the region in the plane (g⇤,�/g⇤), defined by Eqs. (13),(14), that can be probed
by an analysis including only dimension-6 operators (in white). No sensible e↵ective field theory
description is possible in the gray area (� < gmin), while exploration of the light blue region
(gmin < � <

p
g⇤gmin) requires including the dimension-8 operators.
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FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each
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The 4b channel
✔    Largest HH branching fraction

□ about 1500 HH→bbbb events expected in the Run 2 

CMS dataset


⚠   Challenging multijet background

□ requires precise estimation and powerful rejection


■ LHC 4b results

□ CMS 2016 ggF (JHEP 04 (2019) 112) 

obs (exp) U.L. of 75 (37) x σggFSM

□ ATLAS 2016 ggF (JHEP 01 (2019) 030) 

obs (exp) U.L. of 13 (21) x σggFSM

□ ATLAS Run 2 VBF (JHEP 07 (2020) 108) 

840 (540) x σVBFSM  
-0.8 < κ2V < 2.9 (-0.9 < κ2V < 3.1)


■ Today: latest full Run 2 CMS result 
(CMS-PAS-HIG-20-005)

5
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Reconstructing the H candidates

6

12

Dijet-pairing in HH candidate 

M(H1)
 [GeV]

M(H2)
 [GeV]

(Xo,Yo)

(0,0)
D

HH
1 

D
HH

2

D
HH

3Strategy:  Study M(H1)-M(H2) mass plane
 Four jets → 3 possible pairings →  3 points along the plane
 Distance to diagonal line ( D

HH
 ) is used to characterize the pairings

M(H1): Leading Higgs mass

M(H2): Trailing Higgs mass

Previous pairing
Pairing closest to the diagonal i.e. D

HH
1

ggf-HH
(kl=1))

Xo/Yo ~ 1.05

Wrong 
Pairings
Populate
High tail

Improved pairing

ggf-HH
(kl=1))

If |D
HH

1-D
HH

2| > 30 GeV : The D
HH

1  pairing is chosen

Otherwise: The pairing (D
HH

1   or D
HH

2 ) with largest PT(H) in C.M.

Pairing success: 
Before 88%

Now 96%

More in back-up
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■ 4jet+3b trigger, offline preselection of the four jets with the highest b-tag score (≥3 b tagged)


■ Three possible pairings of the four b jets exist ⟹ exploit the “equal-mass” hypothesis

□ if Δd = d2 - d1  > 30 GeV, select d1 pair 

□ otherwise, select between pairs d1 and d2 the one giving the highest pT(H) in the 4b rest frame


■ Achieve correct pairing in 82-98% of events

d =
mH1 − κmH2

1 + κ2
Optimal 
performance 
without 
biasing the 
bkg events



July 5th, 2021Luca Cadamuro (UF) HH→bbbb search with CMS

Event categories
■ VBF events contain two 

additional jets with η1⨉η2 < 0


■ A BDT is trained to separate 
misclassified ggF + 2 jets 
events

□ use kinematic properties of jet 

and H candidates

□ 97% of ggF events correctly 

classified

7

Four central b tagged jets 
mH signature to reject bkg.

High Δη jet pair 
Characteristic VBF signature

4 jet events

ggF VBF

low mHH high mHH SM-like BSM-like

■ ggF events split in low- and high-mHH (450 
GeV) to capture κλ dependence


■ VBF events split in SM-like and BSM-like 
based on BDT score to enhance 
anomalous κ2V contribution
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Background normalization

■ Signal region (SR): 


■ Control region (CR):  


■ Data are divided into a 3b and a 4b sample

□ 5-10⨉ more data in 3b w.r.t. 4b


■ Background yield = NCR4b/NCR3b ⨉ NSR3b

χ < 25 GeV
25 < χ < 50 GeV
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Modelling the background shape
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■ BDT with dedicated metric (J. 
Phys.: Conf. Ser. 762 012036) 
trained to separate CR4b from 
CR3b data

□ inputs: kinematic and object quality

□ stat. test + test discriminator  used 

as metrics in hyperparameters 
tuning until no separation achieved 
(closure check)


■ Score used to reweight SR3b  
data to model  SR4b

Leverage on ML techniques to 
achieve multidimensional data-

driven estimate

https://doi.org/10.1088/1742-6596/762/1/012036
https://doi.org/10.1088/1742-6596/762/1/012036
https://doi.org/10.1088/1742-6596/762/1/012036
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Validating the background model
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“Up”

“Down” “Up”

“Down”Good performance of bkg estimation method validated with data

■ Signal-free validation region (VR) used

□ apply same methods as in the SR

□ VR shifted along the (mH1, mH2) diagonal → no bias from H reconstruction


■ Good statistical agreement for all variables observed in VR

□ add uncertainties for total yields non-closures (1.5-4.7%)

□ uncertainties for the validation vs analysis region statistics (3-30% for VBF cat.)


■ Additional SR uncertainties considered on the background templates

□ bin-bin-bin template variations (poisson counts in 3b data)

□ CR statistical uncertainties

□ alternative bkg. templates from trainings in sub-portions of the CR
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Suppressing the multijet background in ggF
■ BDT to separate the multijet background in ggF


■ Training done on 3b reweighted data

□ 2 trainings performed with same parameters on 50% of the 

dataset and applied to the other 50%

□ separate training for every year/category


■ Input features

□ kinematic variables: H1, H2, HH pT and mass, 4 jet pT sum


□ topological quantities: Δη(HH), ΔR(b,b) in a H candidate, min 
ΔR(4b), max Δη(4b), angles of b and H in the 4 jet rest frame


□ object quality variables: number of tight b jets, sum of the 
resolution estimator of the 3 jets

11
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Signal extraction in VBF categories

■ Fit mHH in the SM-like 
category

□ statistics is too small to 

train a dedicated 
discriminant


■ Counting experiment in 
the BSM-like category

□ high S/B for anomalous κ2V 

events, O(10) bkg events

12

0

20

40

60

80

100

Ev
en

ts 2017-2018 Data
Bkg. model
Bkg. unc.
SM ggF-HH x 20

=2) x 202VκVBF-HH (

VBF SM
 region4b

SRA

 (13 TeV)-1102 fb
 bbbb→HH 

PreliminaryCMS

400 600 800 1000 1200 1400 1600 1800
 [GeV]HHm

0.60.81
1.21.4

D
at

a/
Bk

g.

0

5

10

15

20

25

30

Ev
en

ts 2017-2018 Data
Bkg. model
Bkg. unc.
SM ggF-HH

=2)2VκVBF-HH (

2VκVBF anomalous-
 region4b

SRA

 (13 TeV)-1102 fb
 bbbb→HH 

PreliminaryCMS

Counting experiment bin
0

0.5
1

1.5
2

D
at

a/
Bk

g.



July 5th, 2021Luca Cadamuro (UF) HH→bbbb search with CMS

Results - SM production
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Exp: 70.8

Combined
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Exp: 7.3

CMS Preliminary 13 TeV

■ The high mHH ggF category leads the sensitivity 
to SM production

□ low mHH ggF contributes to constrain anomalous κλ

□ VBF categories constrain the κ2V coupling

□ note: a common signal strength to ggF and VBF is 

assumed here

Observed (expected) 95% CL UL 
3.6 (7.3) ⨉ SM


 Best constraint to date on the SM HH 
production
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Results - couplings
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Best limits to date on κ2V
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Studying the couplings
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to their SM value
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A broader BSM picture
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FIG. 1: Cartoon of the region in the plane (g⇤,�/g⇤), defined by Eqs. (13),(14), that can be probed
by an analysis including only dimension-6 operators (in white). No sensible e↵ective field theory
description is possible in the gray area (� < gmin), while exploration of the light blue region
(gmin < � <

p
g⇤gmin) requires including the dimension-8 operators.
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FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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important consequences for the experimental searches, that are sensitive to anomalous
⁄HHH couplings through both the total HH production cross section and the kinematic
distribution of HH events.

E�ective field theory

In the previous section ⁄HHH has been treated as a free parameter and allowed to vary from
the SM prediction. This has the advantage to cover multiple BSM scenario from a simple
parametrization of the induced coupling modifications at the TeV scale. Results can be
subsequently reinterpreted in a specific model through a comparison for the predicted
⁄HHH deviations. A generalization of this approach with a rigorous method is provided
by the e�ective field theory (EFT). If the scale of BSM physics is assumed to be beyond
the direct reach of the LHC, we can approximate its e�ects through an addition of higher
order operators to the d Æ 4 SM Lagrangian. These additional operators are suppressed
by powers of a scale �. From a bottom-up perspective, � can be interpreted as the
scale up to which only SM fields propagate, while from a top-down perspective it is the
energy scale of the BSM physics itself. The theory thus obtained is not renormalizable,
but this does not constitute a problem in this context as an EFT only represents the
lower energy manifestation of a more extended (and renormalizable) theory at higher
scales. Considering a universal flavour structure and no CP violation, there is only one
dimension–5 operator that has the e�ect of introducing neutrino masses m‹ Ã v

2
/�2. It

can be neglected in this context, so that dimension–6 operators are relevant and the EFT
Lagrangian can be written as:

L = LSM +
ÿ

i

ci

�2 O
6
i + · · · (1.45)

and the BSM physics is fully parametrized in terms of the Wilson coe�cients ci. Once
the EFT defined, any UV-complete BSM model can be matched to it, i.e. reduced to
its lower scale manifestation to derive an expression of the ci coe�cients in terms of the
fundamental model parameters. From an experimental point of view, Eq. (1.45) provides
a generic parametrization to investigate several BSM signatures with a model-independent
approach.

In the context of HH production, a relevant EFT can be constructed as detailed in
Ref. [58]. Following the procedure in Ref. [21], the EFT Lagrangian can be rewritten in
terms of e�ective Higgs boson couplings to provide a simple physics interpretation of the
e�ects of dimension–6 operators. The relevant terms of the Lagrangian for HH processes
initiated by gluon-fusion are given by:

L
HH = 1

2ˆµHˆ
µ
H ≠

m
2
H

2 H
2

≠ k⁄⁄
SM

vH
3

≠
mt

v

3
v + ktH + c2

v
HH

4
(tLtR + h.c.)

+ –s

12fiv

3
cgH ≠

c2g

2v
HH

4
G

A

µ‹G
A,µ‹

(1.46)

The physical interpretation of this Lagrangian is the presence of anomalous ⁄HHH and
yt couplings and of three BSM contact interactions representing ttHH (c2), ggHH (c2g),
and ggH (cg) vertices. In a linear realization of the EWSB, the relation c2 = ≠cg holds.

Shape benchmark
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■ 5D parameter space in a 
generic EFT description

□ sampled with benchmark 

points with characteristic 
kinematic properties


■ Ongoing work to define an 
approach for complete EFT 
scan in HH analyses

Beyond the self-coupling (only): 
HH as a probe of high energy BSM effects
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Conclusions ?
■ HH: a key topic in the exploration of the scalar sector

□ direct access to the self-coupling

□ probe of high-energy new physics effects in anomalous couplings


■ HH→bbbb: largest BR, but highly challenging multijet background


■ CMS developed a new full Run 2 analysis to optimally benefit of the recorded dataset

□ ggF + VBF production modes

□ optimised selection and categorization of events

□ accurate data-driven estimation method

□ powerful discriminants to reject the multijet background


■ Best constraints to date: obs. (exp.) 3.6 (7.3) ⨉ SM

□ quickly approaching the SM sensitivity with upcoming combinations!

17
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Conclusions

18

A few examples 
Papers from 6-8 years ago

HH→bbbb was considered 
hopeless just a few years ago

Analyses improve 
much faster than 
the luminosity!

◀  HL-LHC YR projections

The CMS full Run 2 result 
improved by 5⨉ over 
previous 2016 CMS 
results

Excellent 
prospects for 

Run 3 and 
HL-LHC



Additional material
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HH cross-section dependence on κλ

■ Quadratic dependence of the 
xs on κλ


■ Interference effects → 
minimum xs for κλ ≠ 1

□ minimum at κλ = 2.45 for ggF

20
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Figure 3: Total cross sections at the LO and NLO in QCD for HH production channels, at the
√

s =14 TeV LHC as a function of the
self-interaction coupling λ. The dashed (solid) lines and light- (dark-)colour bands correspond to the LO (NLO) results and to the scale and
PDF uncertainties added linearly. The SM values of the cross sections are obtained at λ/λSM = 1.
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ggF discriminants
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VBF discriminants
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Grouping all the categories

■ Events yields aggregated from all categories, sorted 
by ascending log10(S/B)

□ considering a SM HH signal


■ the underfluctuation at high S/B, directly stemming from the 
deficit in the ggF high mHH category, is clearly visible
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Likelihood scans
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Mass categorization
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Impact of VBF categories on κλ

■ The self-coupling 
determination is entirely 
driven by the ggF 
categories
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Fitting the ggF and VBF strengths
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■ Separate fit of the ggF and VBF signal 
strengths

□ in both cases the SM couplings are assumed (for 

the expected signal shapes and acceptances)
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Limits by data taking year
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■ Sensitivity lead by the 2017+2018 
data (⨉2.8 more data)


■ TIghter trigger thresholds partially 
reduce the sensitivity of the 
2017+2018 analysis compared to 
the simple sqrt(L) scaling of the 
2016 result


