

Search for Higgs Boson pair production in the final state with two bottom quarks and two photons in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Jniv. Grenoble Alpe

French IRN Terascale July 5th, 2021

Hulsken Raphaël On the behalf of the ATLAS collaboration Run: 329964 Event: 796155578 2017-07-17 23:58:15 CEST

Paper information

ATLAS CONF Note ATLAS-CONF-2021-016 March 31, 2021

Search for Higgs boson pair production in the two bottom quarks plus two photons final state in ppcollisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

Searches are performed for non-resonant and resonant di-Higgs boson production in the $b\bar{b}\gamma\gamma$ final state. The data set used corresponds to an integrated luminosity of 139 fb⁻¹ of proton–proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No excess with respect to background expectations is found and upper limits on the di-Higgs boson production cross sections are set. A 95% confidence level upper limit of 130 fb is set on the $pp \rightarrow HH$ non-resonant production, where the expected limit is 180 fb. The observed (expected) limit corresponds to 4.1 (5.5) times the cross section predicted by the Standard Model. The observed (expected) limit on the Higgs boson trilinear coupling modifier κ_A is extracted to be [-1.5, 6.7] ([-2.4, 7.7]) at 95% confidence level. The constraints on κ_A are obtained over an expected hypothesis excluding $pp \rightarrow HH$ production. For the resonant production of a new hypothetical scalar particle $X (X \rightarrow HH \rightarrow b\bar{b}\gamma\gamma)$, limits on the cross section $pp \rightarrow X \rightarrow HH$ are presented for the narrow-width approximation as a function of m_X in the range 251 GeV $\leq m_X \leq 1000$ GeV. The observed (expected) limits on the cross section $pp \rightarrow X \rightarrow HH$ range from 610 fb to 47 fb (360–43 fb) over the considered mass range.

Paper here Published as a conf note for Moriond QCD

05/07/2021

Physics Motivations (non-resonant)

Study of the Higgs potential

• Tiny SM σ_{HH}^{ggF} (31.02 fb at 13 TeV for m_{H} =125.09) due to destructive interference

- Deviation can be a manifestation of new physics
- σ_{HH}^{VBF} (31.02 fb at 13 TeV for m_{H} =125.09)

M_u= ~ v ~ 24

-> we

$$V(\phi^{\dagger}\phi) = \mu^{2}\phi^{\dagger}\phi + \lambda(\phi^{\dagger}\phi)^{2}$$

$$\supset \lambda v^{2}H^{2} + \lambda vH^{3} + \frac{\lambda}{4}H^{4}$$

M_{\mu} = ~125 GeV

$$\sim 246 \text{ GeV}$$

$$\Rightarrow \text{ we know } \lambda \text{ (theo)}$$

$$Access through HH pairs Not accessible yet$$

• Here
$$\sigma_{HH} = \sigma_{HH}^{ggF} + \sigma_{HH}^{VB}$$

05/07/2021

Physics Motivations (resonant)

- Search for a **spin 0** resonance in the 251 GeV $\leq X \leq 1$ TeV range
- Narrow width models with two Higgs doublets. MSSM, twin Higgs models and composite Higgs models contain such doublets
- Non-resonant ggF and VBF taken as background

Branching ratio [%]

Channel choice

High branching ratio

- Excellent m_{vv} resolution
- Isolated photons :
 - good trigger (advantage for low $m_{\mbox{\tiny HH}})$
 - High S/B
 - Clean signal

Fully reconstructable final state

05/07/2021

Data and samples

- Full run 2 data (139 fb-1)
- ggF HH signal at NLO ($\kappa_{\lambda} = 1,10$) with Powheg-box v2 + Pythia 8
- VBF HH signal at LO ($\kappa_{\lambda} = 0, 1, 2, 10$) with MadGraph5_aMC@NLO + pythia 8
- Spin 0 resonance at LO MadGraph5_aMC@NLO + Herwig
- Single Higgs and continuum background summarized in the table
- PU overlay : Pythia 8.1

	Process	Generator	PDF set	Showering	Tune
-	ggF	NNLOPS	PDFLHC	Рутніа 8.2	AZNLO
	VBF	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO
	WH	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO
	$qq \rightarrow ZH$	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO
	$gg \rightarrow ZH$	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO
	tĪH	Powheg Box v2	NNPDF3.0nlo	Рутніа 8.2	A14
	bbH	Powheg Box v2	NNPDF3.0nlo	Рутніа 8.2	A14
	tHqj	MadGraph5_aMC@NLO	NNPDF3.0nlo	Рутніа 8.2	A14
	tHW	MadGraph5_aMC@NLO	NNPDF3.0nlo	Рутніа 8.2	A14
	$\gamma\gamma$ +jets	Sherpa v2.2.4	NNPDF3.0nnlo	Sherpa v2.2.4	_
	$t\bar{t}\gamma\gamma$	MadGraph5_aMC@NLO	NNPDF2.31o	Рутніа 8.2	_

05/07/2021

Analysis strategy

05/07/2021

Object and preselection

- Tight photon identification
- Isolation criteria in a cone of R =0.2 - $E_{\tau^{iso}} < 0.065^* E_{\tau}$
 - p_T^{iso} <0.05* E_T
- 105 GeV $\leq m_{\gamma\gamma} \leq 160$ GeV
- $E_T/m_{\gamma\gamma} > 0.35$ (0.25) for leading (subleading) photon
- Less than 6 central jets
- Pflow jets, anti-kt R=0.4
- Tight JVT applied

X

- 2 b-jets with DL1r 77 % WP
- B-jet correction applied
 - Muon in jet + P_T -reco

Taken from Evidence for the H->bb decay with the ATLASdetector

05/07/2021

HH invariant mass selection

- 2 category in Non-resonant analysis : -low : < 350 GeV for BSM -High : >350 GeV for SM
- Resonant analysis : selection applied on m^*_{bbyy} at +/-2 σ (+/- 4 σ) around the expected **mean signal value** for **each resonance** (at 900-1000 GeV)

05/07/2021

Non-resonant BDT selection

- Low and High mass region are both separeted in 2 smaller category
- **BDT trained** for **each region** to discriminate signal $(\kappa_{\lambda} = 1, 10)$ from continuum and single Higgs
- Loose and Tight BDT selection

 Selection taken to maximize the combined expected significance
- Requirement : at least 9 expected background events in $m_{_{\gamma\gamma}}$ window (outside 120-130) needed to fit data in side-band

Category	Selection criteria
High mass BDT tight	$m_{b\bar{b}\gamma\gamma}^* \ge 350 \text{ GeV}, \text{BDT score} \in [0.967, 1]$
High mass BDT loose	$m_{b\bar{b}\gamma\gamma}^* \ge 350 \text{ GeV}, \text{BDT score} \in [0.857, 0.967]$
Low mass BDT tight	$m_{b\bar{b}\gamma\gamma}^* < 350 \text{ GeV}, \text{BDT score} \in [0.966, 1]$
Low mass BDT loose	$m_{b\bar{b}\gamma\gamma}^{*} < 350 \text{ GeV}, \text{BDT score} \in [0.881, 0.966]$

Higgs boson pair production, HULSKEN Raphaël

05/07/2021

Resonant BDT selection

- One BDT for all resonances but one selection per mass
- Requirement : at least 9 expected background events in $m_{_{\gamma\gamma}}$ window (outside 120-130) needed to fit data in side-band
- Two BDT to separate signal for continuum and from single Higgs background
- Combination of both score into one score BDT_{score} ($C_2 = 1 C_1$)

$$BDT_{\text{score}} = \frac{1}{\sqrt{C_1^2 + C_2^2}} \sqrt{C_1^2 (\frac{BDT_{\gamma\gamma} + 1}{2})^2 + C_2^2 (\frac{BDT_{SH} + 1}{2})^2}$$

- First optimization maximizing each resonance with different coefficient and BDT selection
- Search a common coefficient allows the significance to varies at most up to 5 % (C₁=0.65 is used) with individual BDT

05/07/2021

Data/MC comparison

Events dominated

background

Data-driven method using

2x2D method

reverting the

isolation and

identification

photon criteria

(only used for

comparison)

based on

data/MC

by continuum yybb

Non-resonant Events / 2.5 GeV **ATLAS** Preliminary $\sqrt{s} = 13$ TeV, 139 fb⁻¹ Data HH (SM) HH→bbγγ 12 Single Higgs $M_{\chi} \ge 350 \text{ GeV}$ tτγγ BDT Tight 10γγbb γγ+other jets DataDriven γi **8**H DataDriven jj

Resonant

05/07/2021

Events / 2.5 GeV

10

8

Signal and background modelisation

- Fit $m_{\gamma\gamma}$ on for both resonant & non-resonant
- Signal and single Higgs background is modeled from fit on MC using DBSC function
- Continuum background is modeled from data side-band fit
- Choice of the continuum function done via spurious signal method
 - Estimate the **signal bias** by fitting a background only MC template using a signal+background function
 - Exponential function chosen due to small bias and small number of free parameters

Statistical analysis

- Maximum likelihood fit in the 105 GeV < $m_{_{YY}}$ < 160 GeV region (simultaneously for all non-resonant category)

$$\mathcal{L} = \prod_{c} \left(\operatorname{Pois}(n_{c} | N_{c}(\boldsymbol{\theta})) \cdot \prod_{i=1}^{n_{c}} f_{c}(m_{\gamma\gamma}^{i}, \boldsymbol{\theta}) \cdot G(\boldsymbol{\theta}) \right)$$

Resonant

while **µ** float in the fit

05/07/2021

Systematic uncertainties

- Both analysis dominated by statistical uncertainty, systematic uncertainty have relatively low effects
- Only spurious signal uncertainty affects continuum background as fitted from data
- Other uncertainties affects the resonant and non-resonant signal as well as the single Higgs background

		Relative impact of the systematic uncertainties in $\%$		
Source	Туре	Non-resonant analysis HH	Resonant analysis $m_X = 300 \text{ GeV}$	
Experimental				
Photon energy scale Photon energy resolution Flavor tagging	Norm. + Shape Norm. + Shape Normalization	5.2 1.8 0.5	2.7 1.6 < 0.5	
Theoretical				
Heavy flavor content Higgs boson mass PDF+ α_s	Normalization Norm. + Shape Normalization	1.5 1.8 0.7	< 0.5 < 0.5 < 0.5	
Spurious signal Normalization		3.3	5.4	

05/07/2021

Non-resonant results

No signal is observed, exclusion limits are set via the CIs method with asymptotic approximation

Expected (Observed) non-resonant HH production of 180 (130) fb :
 5.5 (4.1) times the SM

- Previous paper, 36 fb⁻¹ <u>results</u> : 28 (22) times the SM, -8.3 (-8.2) < κ_{λ} < 13.2 (13.2)
- Full Run 2 CMS <u>results</u> : 5.2 (7.7) times the SM, -2.5 (-3.3) < κ_{λ} < 8.2 (8.5)

05/07/2021

Resonant results

No signal is observed, exclusion limits are set via the CIs method with asymptotic approximation

• Expected (Observed) σ upper limits at 95% CL for a scalar resonance vary between **360-43 fb (160-47 fb)** in the 251 GeV $\leq m_x \leq 1000$ GeV mass range.

• Previous paper, 36 fb⁻¹ results: expected (observed) limits between 0.9 pb (1.1 pb) and 0.15 (0.12) in the range 260 GeV $\leq m_x \leq 1000$ GeV

05/07/2021

Conclusion

 Resonant and non-resonant searches for HH production in the HH-> bbyy final state are presented

Non-resonant

5.5 (4.1) times the SM -2.4 (-1.5) < κ_λ < 7.7 (6.7)

~60% improvement from m_{HH} categorization ~20% from BDT strategy ~10% from b-jet corrections Resonant

360-43 fb (610-47) in the 251 GeV $\leq m_{\chi} \leq$ 1000 GeV mass range

~30% improvement from BDT strategy

Best channel for low regime

05/07/2021

Thanks for your attention !

05/07/2021

Variable in BDT non-resonant analysis

Variable	Definition			
Photon-related kine	noton-related kinematic variables			
$p_{\rm T}/m_{\gamma\gamma}$	Transverse momentum of the two photons scaled by their invariant mass $m_{\gamma\gamma}$			
η and ϕ	Pseudo-rapidity and azimuthal angle of the leading and sub-leading photon			
Jet-related kinematic variables				
<i>b</i> -tag status	Highest fixed <i>b</i> -tag working point that the jet passes			
p_{T}, η and ϕ	Transverse momentum, pseudo-rapidity and azimuthal angle of the two jets with the highest <i>b</i> -tagging score			
$p_{\mathrm{T}}^{bar{b}},\eta_{bar{b}}$ and $\phi_{bar{b}}$	Transverse momentum, pseudo-rapidity and azimuthal angle of <i>b</i> -tagged jets system			
$m_{b\bar{b}}$	Invariant mass built with the two jets with the highest <i>b</i> -tagging score			
H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event			
Single topness	For the definition, see Eq. (??)			
Missing transverse	Missing transverse momentum-related variables			
$E_{\rm T}^{\rm miss}$ and $\phi^{\rm miss}$	Missing transverse momentum and its azimuthal angle			

05/07/2021

Variable in BDT resonant analysis

Variable	Definition		
Photon-related kinematic variables			
$p_{\rm T}^{\gamma\gamma}, y^{\gamma\gamma}$	Transverse momentum and rapidity of the di-photon system		
$\Delta \phi_{\gamma\gamma}$ and $\Delta R_{\gamma\gamma}$	Azimuthal angular distance and ΔR between the two photons		
Jet-related kinematic variables			
$m_{b\bar{b}}, p_{\rm T}^{b\bar{b}}$ and $y_{b\bar{b}}$	Invariant mass, transverse momentum and rapidity of the <i>b</i> -tagged jets system		
$\Delta \phi_{bar{b}}$ and $\Delta R_{bar{b}}$	Azimuthal angular distance and ΔR between the two <i>b</i> -tagged jets		
N_{jets} and $N_{b-\text{jets}}$	Number of jets and number of <i>b</i> -tagged jets		
H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event		
Photons and jets-related kinematic variables			
$m_{b\bar{b}\gamma\gamma}$	Invariant mass built with the di-photon and <i>b</i> -tagged jets system		
$\Delta y_{\gamma\gamma,b\bar{b}}, \Delta \phi_{\gamma\gamma,b\bar{b}}$ and $\Delta R_{\gamma\gamma,b\bar{b}}$	Distance in rapidity, azimuthal angle and ΔR between the di-photon and the <i>b</i> -tagged jets system		

05/07/2021

Number of events

Non-resonant analysis

	High mass BDT tight	High mass BDT loose	Low mass BDT tight	Low mass BDT loose
Continuum background Single Higgs boson background ggF tīH ZH Rest	$\begin{array}{c} 4.9 \pm 1.1 \\ 0.670 \pm 0.032 \\ 0.261 \pm 0.028 \\ 0.1929 \pm 0.0045 \\ 0.142 \pm 0.005 \\ 0.074 \pm 0.012 \end{array}$	9.5 ± 1.5 1.57 ± 0.04 0.44 ± 0.04 0.491 ± 0.007 0.486 ± 0.010 0.155 ± 0.020	$\begin{array}{c} 3.7 \pm 1.0 \\ 0.220 \pm 0.016 \\ 0.063 \pm 0.014 \\ 0.1074 \pm 0.0033 \\ 0.04019 \pm 0.0027 \\ 0.008 \pm 0.006 \end{array}$	24.9 ± 2.5 1.39 ± 0.04 0.274 ± 0.030 0.742 ± 0.009 0.269 ± 0.007 0.109 ± 0.016
SM HH signal ggF VBF	$\begin{array}{c} 0.8753 \pm 0.0032 \\ 0.8626 \pm 0.0032 \\ 0.01266 \pm 0.00016 \end{array}$	$\begin{array}{c} 0.3680 \pm 0.0020 \\ 0.3518 \pm 0.0020 \\ 0.01618 \pm 0.00018 \end{array}$	$\begin{array}{c} (49.4\pm0.7)\cdot10^{-3}\\ (46.1\pm0.7)\cdot10^{-3}\\ (3.22\pm0.08)\cdot10^{-3} \end{array}$	$(78.7 \pm 0.9) \cdot 10^{-3}$ (71.8 ± 0.9) \cdot 10^{-3} (6.923 ± 0.011) \cdot 10^{-3}
Alternative $HH(\kappa_{\lambda} = 10)$ signal	6.36 ± 0.05	3.691 ± 0.038	4.65 ± 0.04	8.64 ± 0.06
Data	2	17	5	14

Resonant analysis

	$m_X = 300 \text{ GeV}$	$m_X = 500 \text{ GeV}$
Continuum background Single Higgs boson background SM <i>HH</i> background	$5.6 \pm 2.4 \\ 0.339 \pm 0.009 \\ (20.6 \pm 0.5) \cdot 10^{-3}$	3.5 ± 2.0 0.398 ± 0.010 0.1932 ± 0.0015
$X \to HH$ signal	5.771 ± 0.031	5.950 ± 0.026
Data	6	4

05/07/2021

Cross section distribution as function of k_λ or $k_{-\nu}$

05/07/2021