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Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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38Differential Cross Section Measurements
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This is the bread and butter of the 
measurement program at the LHC!

The key component of this is the correction of 
detector effects.  This allows for the data to be 

compared with other experiments and with predictions.

correction of detector effects = unfolding
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Usual solution:

dN
/d

x
x

We pick O(1) 
observables 
and bin them 

into O(10) bins
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Can we use many dimensions?



44Unbinned Unfolding

There were some early proposals for unbinned unfolding* but as 
far as I am aware, they were not used for any measurements.

*see L. Lindemann and G. Zech, NIM A 354 (1995) 516 & related 
+see https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-21-031.long.html

However, recent innovations in machine learning and 
resulted in new methods for unbinned unfolding, 

which are being used for data analysis+ (!)

The goal of this discussion is to propose a common way for 
publishing unbinned results to maximize their science potential

We need input from both experimentalist and theorists (!)



45Publishing Binned Results

How do we publish binned results?
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48Publishing Binned Results

YAML files with 
metadata, bin 
contents, and 
uncertainties



49How to represent unbinned data?

If the data can be fit with a function, you could 
publish the function (e.g. if it is a NN, you could 

publish the architecture and weights).

Another natural representation that doesn’t 
require a function fit is to publish data 

sampled from the unfolded result.

My proposal is based on this idea.



50Proposal

As in HEPData, I propose there is a “submission” 
YAML file with the same measurement metadata.

Each submeasurement* also has some metadata & points 
to a data file.  In HEPData, the data file is itself a YAML file.

The files will have data with the “shape” [(M+1) x N(k+1)]

…where N is the number of sampled events
and M is the number of systematic uncertainties

*this could be a single observable, or many observables

and k is the number of dimensions per event



51Proposal

Each event has k floats* and 1 event weight

*For variable-length measurements, perhaps should use variable-length arrays like awkward for storage

The files will have data with the “shape” [(M+1) x N(k+1)]

There are N events

This is repeated for each of the M systematic uncertainties

For representations that don’t have weights, the weights 
will be set to 1.  For representations that only use 

weights, there will be M copies of the original array.

I have not thought deeply about file formats (npy, root, 
hdf5) and would be happy to hear opinions.

https://awkward-array.readthedocs.io/en/latest/


52Proposal - uncertainties

The submission YAML should give metadata 
about which uncertainties are included.

For statistical uncertainties, there should be Q replicas 
and the uncertainty in a given bin is computed by 

taking the standard deviation over replicas.

For systematic uncertainties, the difference between the 
nominal and varied bin content is the uncertainty.

There should be warnings in metadata and/or 
inflated uncertainties in regions of phase space 

that should not be studied with the data.



53Proposal - where to store?

Zenodo is a very natural location.  Maybe the 
submission YAML can also be hosted on HEPData 

and linked to Zenodo for each searching?

https://zenodo.org


54Proposal - example



55Discussion!


