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Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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Figure 31: A schematic diagram of the ways to represent jets and the natural NN architectures
that go with each representation. The deep sets image is from Ref. [548], the recurrent NN
image is from Ref. [541], the tree image is from Ref. [543], and the graph image is from
Ref. [545].

subjettiness observables ⌧ (�)
k

[228] to ‘span’ m-body phase space for su�ciently

many ⌧ (�)
k

’s [551]. The authors of Ref. [552, 553] proposed to extract analyt-

ically tractable observables from the ⌧ (�)
k

set by learning product observables

which approximate the full NNs. Another way to automate physically-inspired

learning was presented with the Lorentz layer [554] and Lorentz boost [555] net-

works, which encode Lorentz invariant feature extraction as the first layers to a

deep network acting directly on four-vectors.

Figure 31 provides an overview of the representations that have been used

to analyze jet substructure in the context of machine learning, along with the

NN architectures used for each representation.

3.1.2. Preprocessing and the Symmetries of Spacetime

The first step to process a full jet’s substructure is to preprocess them into the

proper format based on the machine learning architecture. Preprocessing steps

91

Larkoski, Moult, and Nachman, 1709.04464, with images from Komiske, Metodiev, Thaler, 1810.05165; ATLAS, PUB-2017-003; 
T. Cheng, 1711.02633; Henrion et al. MLPS @ NeurlPS 2017
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7Deep Generative Models

A generator is nothing other than a function 
that maps random numbers to structure.

Image: Paganini, Oliveira, Nachman, 1705.02355
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Finally the total energy is fed into Flow I (as a conditional label) as

log10 (Etot/10 GeV) 2 [�1, 1]. (4.4)

Working in log-space helped the flow to learn the distribution for small energies better. We

train Flow I with a batch size of 200 for 50 epochs using the ADAM [76] optimizer with an

initial learning rate of 4 · 10�5. We use a learning rate schedule that applies an additional

factor of 0.5 to the learning rate after the epochs [5, 10, 30, 40]. We use the model state of the

flow with the lowest test loss in the following.

4.2 Flow II: learning the shower shapes

504 dim.
Base dist.

...
MADE

BlockEi

Etot MADE

BlockEi

Etot MADE

BlockEi

Etot MADE

BlockEi

Etot

Normalizing Flow Bijector

GEANT4 data

pre
-

pro
ces

sing CaloFlow samples

post-processing

density estimation in training

shower generation

RQS RQSinv. RQSperm. RQSinv.

Figure 2. Schematic view of Flow II. Inversions (inv.) and permutations (perm.) are layer-wise.
Pre-processing (for training and density estimation) and post-processing (for sampling) are explained
in the main text; Ei is short for the set (E0, E1, E2).

The distribution of shower shapes, p2(~I|E0, E1, E2, Etot), is learned by a second NF

(“Flow II”) that acts on the full 288+144+72 dimensional space of all voxels and is conditioned

on Etot, as well as the Ei whose distribution was learned in Flow I. See fig. 2 for a detailed

schematic of Flow II and the second row of table 2 for the specifications of Flow II. In

between the MADE blocks, we alternate layer-wise order inversions and layer-wise order

permutations of the variables. Layer-wise in this context means that variables of calorimeter

layer 0 stay in the first 288 positions, variables of calorimeter layer 1 stay in the positions

289 to 432 and the variables of calorimeter layer 2 stay in the last 72 positions throughout

the permutation/inversion. We found that training with a dropout [77, 78] probability of 5%

enhances the performance.

For the training data, we transform the raw Geant4 calorimeter images in the following

ways.

1. We found it was essential to first apply uniform random noise in the range [0, 1] keV

to all voxels when called for training. The energy distribution of each voxel is sharply

peaked at zero, and without the noise regularization, the NF would expend all of its

– 10 –

especially the performance increase in E2/Êtot compared to CaloGAN is remarkable.

• The third rows of figs. 10 – 12 show the layer (depth)- weighted total energy, ld =P2
k=0 kEk, on the left; the layer-weighted energy normalized to the total energy, sd =

ld/Êtot, in the center; and the standard deviation of sd, called shower depth width �sd ,

on the right. The quantity sd was called “shower depth” in [8]. In ld we see CaloFlow

better maps out the low-energy region compared to CaloGAN. Notice also how well

CaloFlow learns the sharp feature in �sd .

Figure 10. Distributions that are sensitive to Flow I for e
+. Top row: energy deposition per layer

and total energy deposition; center row: layer energy normalized to total energy deposition; bottom
row: weighted energy depositions, see text for detailed definitions.
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– 20 –

CaloFlow: Krause and Shih, 2106.05285
CaloGAN: Paganini, Oliveira, Nachman, 1705.02355 
not quite a fair comparison, but the state-of-the-art 
accuracy is highly non-trivial and very impressive!

GAN, Flow are NNs
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Figure 5. The physics-based (‘real’) mass distributions compared with distributions from the template
method and the vanilla GAN in bins of jet pT (top row), ÷ (middle row), and N (bottom row). The
uncertainty in the ratio was calculated as the 1-sigma error assuming poisson distributions of events in
each bin. The error shown in the plots is the calculated statistical error. The corresponding plot in the
control region is qualitatively similar, but converges quicker.
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Figure 2: Posterior probabilities for the toy shower, gluon radiation only, {Dqq, Fqq, Cqq}. We
assume SM-like jets and show results for truth-sorting (left) and for kT -sorting (right).

with the majority of jets at the upper boundary. After that, any other parton can act as the
spectator. For this simple setup a jet reconstruction is not necessary, since we only simulate
a single shower, and we neither include hadronization nor detector e↵ects.

The network then analyses the set of outgoing momenta except for the initial spectator
momentum. The list of constituents includes up to F entries, and is zero-padded or cropped.
For our training data we scan the parameter space {Dij , Fij , Cij} with L = 2 and 3 dimen-
sions. For each parameter point we generate M probabilistic showers. To observe the correct
posterior contraction with the size of the test sample we train the network with variable M .
During the training we use batches of size N . The input to the summary network per batch
are N ⇥M ⇥ F 4-vectors. The output of the summary networks is mean-pooled over M and
has dimension S for each batch, plus the value of

p
M , so (S + 1) entries per batch, if the

posterior contraction is trained.

The distribution of the number of jets M over the N batches can be adapted to the
problem. We find that distributing the batches with 1/M is e↵ective to counter the compu-
tational e↵ort at high M . We will explicitly show that we retain enough high-M information
to guarantee the correct scaling of the error.

The cINN then provides a bijective mapping of the L-dimensional parameter space to
the latent space of the same dimension, again per batch. The latent space is forced into a
Gaussian noise form, so we can sample from it to compute the probability distribution for a
given set of Meval showers in model space. Values Meval not included in the training will lead
to unstable results, if

p
M was added to the summary network output. All parameters of the

network architecture and the hyperparameters are given in Tab. 1. For the cINN we combine
five coupling layers. The internal networks of the coupling layers, s1/2 and t1/2, are three
fully connected layers with ELU activation. The summary network is built out of six fully
connected layers with ReLU activation, ELU activation in the last layer, followed by average

8

Bieringer et al., 2012.09873

Coefficients of 
splitting 

functions with 
invertible NNs
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See also the LHC 
Olympics 2020

3

In particular we find that the KL divergence between
the latent space representation of an event and the prior
distribution is a consistently good classifier. However
there is a drawback. Because the optimisation goal of
the VAE is not aligned with the classification goal, the
training typically reaches a point after which the classi-
fication performance of the latent space metrics degrade.
This is highly correlated with a peak in the KL loss term,
and is likely due to an over-regularisation from this term
once the reconstruction loss becomes very small.5 Our
solution is to terminate the training at the epoch where
this KL loss is largest, and then use the latent space rep-
resentation of the events at this epoch for classification.

Classification results We consider 3 values of S/B 2

[10%, 1%, 0.1%] and for each train 20 models. The train-
ing for each model is terminated once the KL loss peaks
and the network at the epoch of largest KL loss is used
for classification. For robustness we ensemble the output
of the encoders in each of the 20 runs per S/B, using the
mean of the per-event KL divergence as the classifier.
The performance of such a classifier at S/B = 0.1% is
shown with a black line on Fig. 2, with the signal and
background distributions of the average per-event KL
shown in the inset plot. The uncertainty on the clas-
sification, indicated by the blue region around the ROC
curve, is estimated using the standard deviation of the
per-event KL divergences around the mean. We do not
show the results for larger S/B, however the only con-
siderable di↵erence is that the width of the blue band
narrows for larger S/B. Note that this classifier is able
to improve significance (S/

p
B) of the signal in the given

dataset by up to a factor of almost three. Since it does
not employ sidebands nor signal region scanning, it is free
from trials factors associated with such techniques.

Figure 2. ROC performance on the LHC Olympics test data
with S/B = 0.1%. See text for details.

5 This is also related to the choice of ↵ discussed previously.

Latent Space Characterisation VAEs are generative
models and from the latent space representation of the
data they learn a likelihood function parameterised by
the decoder. We can use this decoder to test how well
the VAE is encoding data in the latent space. One of
the unique features of the VAE set-up so far is the use
of the Adadelta optimiser, which is crucial for obtaining
good classification performance. However we find that
we actually obtain better reconstructions of the data by
re-training only the decoder using the Adam optimiser.
This makes sense, since the drawback of Adam in train-
ing the VAE is associated with the momentum feature
smoothing over outliers in the training data, in the gen-
eration step this is not an issue. Also, in the re-training
step contrary to the initial VAE training, we can now
train the decoder until approximate convergence (typi-
cally after few tens of epochs).

0 200 400 600 800 1000
mj1[GeV]

S/B = 0.1%

�1 0 1 2

mj1

(�2/�1)j1

(�3/�2)j1

mj2

(�2/�1)j2

(�3/�2)j2
background

signal

Figure 3. Input (outline) and reconstructed (filled) leading jet
mass distribution for both signal and background, with the
inset plot showing the di↵erence between medians of the input
and reconstructed distributions, normalized to the standard
deviations of the input distributions. See text for details.

The re-training of the decoder allows us to introduce an
additional mechanism to enhance the physical character-
isation of the latent space. We can explicitly embed the
invariant mass observable for each event as a direction in
latent space orthogonal to the 1D z direction, as depicted
on the lower scheme on Fig. 1. This is done by an addi-
tional sampling of mjj from a Gaussian distribution cen-
tred at the measured invariant mass of the di-jet event,
m̄ = mjj with a standard deviation of �m = 0.025⇥mjj ,
corresponding to an approximate 5% error on the invari-
ant mass observable. To make the invariant masses more
compatible with the z inputs in the decoder, they are
rescaled using the StandardScaler (along with the ap-
propriate rescaling of the sampling standard deviations).
Note that, since in the re-training step, the encoder is
frozen, the classifier remains agnostic to mjj . In Fig. 3
we plot the reconstruction of the leading jet mass for both
signal and background, while in the inset figure we plot
the di↵erence between the median of the reconstructed

Bortolato et al., 2103.06595

Extract features of 
signal with little input

https://lhco2020.github.io/homepage/
https://lhco2020.github.io/homepage/
https://lhco2020.github.io/homepage/
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Simulators are a unique and powerful aspect of particle 
physics, but, they do not allow us to go “backwards” !!
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the model that generate this)
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If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)

The Inference Challenge

(or sometimes the parameters of 
the model that generate this)
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!

If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)

The Inference Challenge

Challenge: measured is hyperspectral and true is 
hypervariate … p(meas. | true) is intractable !
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Challenge: measured is hyperspectral and true is 
hypervariate … p(meas. | true) is intractable !!

However: we have simulators that we can 
use to sample from p(meas. | true) 

→ Simulation-based (likelihood-free) inference !

If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)

The Inference Challenge

…an area of machine learning were particle 
physics is making key contributions!

See Cranmer, Brehmer, Louppe, 1911.01429 for a recent overview
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (Sim./Gen.), unfolded with OmniFold and compared to IBU.OmniFold matches or exceeds the unfolding performance
of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas unfolding
with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

unfolded distribution of any observable using Eq. (5).
Hence, this procedure can be viewed as simultaneously
unfolding all observables.

Our study is based on proton-proton collisions gener-
ated at

p
s = 14 TeV with the default tune of Her-

wig 7.1.5 [33–35] and Tune 26 [36] of Pythia 8.243 [37–
39] in order to study a challenging setting where the “nat-
ural” and “synthetic” distributions are substantially dif-
ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [40] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [41] implemented in
FastJet 3.3.2 [42, 43]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used

for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [44, 45] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle
�, and particle identification code [46], restricted to the
experimentally-accessible information (PFN-Ex [44]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [44] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [47].
Neural networks are trained with Keras [48] and Tensor-
Flow [49] using the Adam [50] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [51]. The
first four are jet mass m, constituent multiplicity M , the

Andreassen et al., 1911.09107

What if we could unfold all particles simultaneously?  
We could then compute observables (and their bins) 

AFTER doing the measurement (!)

…stick around for the second part of this 
session for more discussions on this point
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SUSY = Supersymmetry

Can we relax model 
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dimensional feature spaces?
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?

Can we relax model 
assumptions and explore high-
dimensional feature spaces?

Simple 
combinations of 
momenta, e.g. 

invariant masses

Current Search Paradigm

What if we are not 
looking in the right place 
for the new phenomena?!



26New search ideas

Supervision refers to the type of label 
information provided to the ML during training.

Unsupervised = no labels 
Weakly-supervised = noisy labels 
Semi-supervised = partial labels 

Supervised = full label information

These categories are not exact 
and the boundaries are not rigid!



27Solutions: Unsupervised

Typically, the goal of these methods is to look 
for events with low p(background)

Unsupervised = no labels

Farina, Nakai, Shih, 1808.08992; Heimel, Kasieczka, Plehn, Thompson, 1808.08979; + many more including the 
recent LHC Olympics (Kasieczka et al., 2101.08320) and Dark Machines (Aarrestad et al., 2105.14027) reports

One strategy (autoencoders) is to try to 
compress events and then uncompress 

them.  When x = uncompres(compress(x)), 
then x probably has low p(x).



28Solutions: Weakly-supervised

Typically, the goal of these methods is to look for events with 
high p(possibly signal-enriched)/p(possibly signal-depleted)

Weakly-supervised = noisy labels

e.g. Classification Without Labels (CWoLa), events in a signal 
region are labeled “signal” and events in a sideband are 

labeled “background”.  These labels are “noisy” but a classifier 
trained with them can detect the presence of a signal.

Metodiev, Nachman, Thaler, 1708.02949; Collins, Howe, Nachman, 1805.02664 
+ many more including the recent LHC Olympics (Kasieczka et al., 2101.08320)
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Typically, the goal of these methods is to look for events with 
high p(possibly signal-enriched)/p(possibly signal-depleted)

Weakly-supervised = noisy labels

e.g. Classification Without Labels (CWoLa), events in a signal 
region are labeled “signal” and events in a sideband are 

labeled “background”.  These labels are “noisy” but a classifier 
trained with them can detect the presence of a signal.
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

Features for 
training CWoLa 

classifier + be careful to not pay a big trails factor

Metodiev, Nachman, Thaler, 1708.02949; Collins, Howe, Nachman, 1805.02664 
+ many more including the recent LHC Olympics (Kasieczka et al., 2101.08320)
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Typically, these methods use some signal 
simulations to build signal sensitivity

Semi-supervised = partial labels

S. Park, D. Rankin, S.-M. Udrescu, M. Yunus, P. Harris, 2011.03550 + many 
more including the recent LHC Olympics (Kasieczka et al., 2101.08320)

Quasi Anomalous 
Knowledge (QUAK)
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Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image
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Connected 
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ReLU Dropout ReLU Dropout
Local 

Response 
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W’→ WZ event

Convolutions
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 
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exploit the data in their natural high dimensionality 

enhancing the potential for discovery!
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Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.
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Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.
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Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

We have some unique 
challenges that require 

dedicated solutions.

With these new tools, we will be able to fully 
exploit the data in their natural high dimensionality 

enhancing the potential for discovery!
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fraction of the exciting work 
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(friends in stat.ml++) 
communities!

My apologies to everyone who’s 
awesome plot(s) I could not show…
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Unbinned differential 
cross section measurements: 

towards a common format
Benjamin Nachman

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.
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and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 
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This is the bread and butter of the 
measurement program at the LHC!

The key component of this is the correction of 
detector effects.  This allows for the data to be 

compared with other experiments and with predictions.

correction of detector effects = unfolding
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44Unbinned Unfolding

There were some early proposals for unbinned unfolding* but as 
far as I am aware, they were not used for any measurements.

*see L. Lindemann and G. Zech, NIM A 354 (1995) 516 & related 
+see https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-21-031.long.html

However, recent innovations in machine learning and 
resulted in new methods for unbinned unfolding, 

which are being used for data analysis+ (!)

The goal of this discussion is to propose a common way for 
publishing unbinned results to maximize their science potential

We need input from both experimentalist and theorists (!)



45Publishing Binned Results

How do we publish binned results?



46Publishing Binned Results
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48Publishing Binned Results

YAML files with 
metadata, bin 
contents, and 
uncertainties



49How to represent unbinned data?

If the data can be fit with a function, you could 
publish the function (e.g. if it is a NN, you could 

publish the architecture and weights).

Another natural representation that doesn’t 
require a function fit is to publish data 

sampled from the unfolded result.

My proposal is based on this idea.



50Proposal

As in HEPData, I propose there is a “submission” 
YAML file with the same measurement metadata.

Each submeasurement* also has some metadata & points 
to a data file.  In HEPData, the data file is itself a YAML file.

The files will have data with the “shape” [(M+1) x N(k+1)]

…where N is the number of sampled events
and M is the number of systematic uncertainties

*this could be a single observable, or many observables

and k is the number of dimensions per event



51Proposal

Each event has k floats* and 1 event weight

*For variable-length measurements, perhaps should use variable-length arrays like awkward for storage

The files will have data with the “shape” [(M+1) x N(k+1)]

There are N events

This is repeated for each of the M systematic uncertainties

For representations that don’t have weights, the weights 
will be set to 1.  For representations that only use 

weights, there will be M copies of the original array.

I have not thought deeply about file formats (npy, root, 
hdf5) and would be happy to hear opinions.

https://awkward-array.readthedocs.io/en/latest/


52Proposal - uncertainties

The submission YAML should give metadata 
about which uncertainties are included.

For statistical uncertainties, there should be Q replicas 
and the uncertainty in a given bin is computed by 

taking the standard deviation over replicas.

For systematic uncertainties, the difference between the 
nominal and varied bin content is the uncertainty.

There should be warnings in metadata and/or 
inflated uncertainties in regions of phase space 

that should not be studied with the data.



53Proposal - where to store?

Zenodo is a very natural location.  Maybe the 
submission YAML can also be hosted on HEPData 

and linked to Zenodo for each searching?

https://zenodo.org


54Proposal - example



55Discussion!


