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This is where most machine learning is being applied.



Representing our data

Variable
sets

Larkoski, Moult, and Nachman, 1709.04464, with images from Komiske, Metodiev, Thaler, 1810.05165; ATLAS, PUB-2017-003;
T. Cheng, 1711.02633; Henrion et al. MLPS @ NeurlPS 2017
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The growing toolkit of generative models are being
developed to accelerate or augment simulations.



Deep Generative Models

A generator is nothing other than a function
that maps random numbers to structure.
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Image: Paganini, Oliveira, Nachman, 1705.02355
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Deep Generative Models in HEP
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Deep Generative Models in HEP
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Simulators are a unique and powerful aspect of particle
physics, but, they do not allow us to go “backwards” !!
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The Inference Challenge

If you know p(meas. | true), could do maximum likelihood, i.e.

unfolded = argmax p(measured | true)
true

Challenge: measured is hyperspectral and true is
hypervariate ... p(meas. | true) is intractable !

However: we have simulators that we can
use to sample from p(meas. | true)

— Simulation-based (likelihood-free) inference !

...an area of machine learning were particle
physics is making key contributions!

See Cranmer, Brehmer, Louppe, 1911.01429 for a recent overview



Example: Unfolding

What if we could unfold all particles simultaneously?
We could then compute observables (and their bins)
AFTER doing the measurement (!)

...Stick around for the second part of this
session for more discussions on this point
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Current Search Paradigm

SUSY = Supersymmetry

r------------

combinations of
momenta, e.g.
Invariant masses

(well-motivated) theory-biased
& low-dimensional observables



Current Search Paradigm

Can we relax model
assumptions and explore high-
dimensional feature spaces?



Current Search Paradigm

What if we are not

<\ looking in the right place
N for the new phenomena?!

N~
\‘ 4

Can we relax model
assumptions and explore high-
dimensional feature spaces?



New search ideas

Supervision refers to the type of label
information provided to the ML during training.

Unsupervised = no labels
Weakly-supervised = noisy labels
Semi-supervised = partial labels
Supervised = full label information

These categories are not exact
and the boundaries are not rigid!



Solutions: Unsupervised

Unsupervised = no labels

Typically, the goal of these methods is to look
for events with low p(background)
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One strategy (autoencoders) is to try to
compress events and then uncompress
them. When x = uncompres(compress(x)),
then x probably has low p(x).

Farina, Nakai, Shih, 1808.08992; Heimel, Kasieczka, Plehn, Thompson, 1808.08979; + many more including the
recent LHC Olympics (Kasieczka et al., 2101.08320) and Dark Machines (Aarrestad et al., 2105.14027) reports



Solutions: Weakly-supervised

Weakly-supervised = noisy labels

Typically, the goal of these methods is to look tfor events with
high p(possibly signal-enriched)/p(possibly signal-depleted)

e.qg. Classitication Without Labels (CWolLa), events in a signal
region are labeled “signal” and events in a sideband are
labeled “background”. These labels are "noisy” but a classitier
trained with them can detect the presence of a signal.

Metodiev, Nachman, Thaler, 1708.02949; Collins, Howe, Nachman, 1805.02664
+ many more including the recent LHC Olympics (Kasieczka et al., 2101.08320)
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classifier + be careful to not pay a big trails factor

Metodiev, Nachman, Thaler, 1708.02949; Collins, Howe, Nachman, 1805.02664
+ many more including the recent LHC Olympics (Kasieczka et al., 2101.08320)



Solutions: Semi-supervised

Semi-supervised = partial labels

ypically, these methods use some signal
simulations to build signal sensitivity

Quasi Anomalous
QCD | Knowledge (QUAK)

S. Park, D. Rankin, S.-M. Udrescu, M. Yunus, P. Harris, 2011.03550 + many
more including the recent LHC Olympics (Kasieczka et al., 2101.08320)



Overview: Particle physics and ML

Theory of everythinn Nature
Fast Parameter
simulation / ( v ) estimati_on/ v
phase space uniolding .
Physics simulators Experiment ~ ©niine
processing &
) , quality control
Detector-level observables  Detector-level observables
' Vo)
Pattern recognition «—— Pattern recogn Pata curation
Classification to cellioteiion
clustering
enhance tracking
sensitivity noise mitigation

particle identification
“signal” versus “background”



Conclusions and outlook

Deep learning has a great R ——
potential to enhance, |
accelerate, and
empower discoveries Iin
particle physics.

We have some unique
challenges that require
dedicated solutions.

With these new tools, we will be able to fully
exploit the data in their natural high dimensionality
enhancing the potential for discovery!



Conclusions and outlook

| only covered a small
fraction of the exciting work
from the hep-ph and hep-ex
(friends in stat.ml++)
communities!

My apologies to everyone who's
awesome plot(s) | could not show...



Upcoming ML Workshops
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Where can | learn more?

HEPML-LivingReview

A Living Review of Machine Learning for Particle Physics

Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and developed for high energy
physics. The goal of this document is to provide a nearly comprehensive list of citations for those developing and applying these
approaches to experimental, phenomenological, or theoretical analyses. As a living document, it will be updated as often as possible to
incorporate the latest developments. A list of proper (unchanging) reviews can be found within. Papers are grouped into a small set of
topics to be as useful as possible. Suggestions are most welcome.

download review

The purpose of this note is to collect references for modern machine learning as applied to particle physics. A minimal number of
categories is chosen in order to be as useful as possible. Note that papers may be referenced in more than one category. The fact that
a paper is listed in this document does not endorse or validate its content - that is for the community (and for peer-review) to decide.
Furthermore, the classification here is a best attempt and may have flaws - please let us know if (a) we have missed a paper you think
should be included, (b) a paper has been misclassified, or (c) a citation for a paper is not correct or if the journal information is now
available. In order to be as useful as possible, this document will continue to evolve so please check back before you write your next
paper. If you find this review helpful, please consider citing it using \cite{hepmllivingreview} in HEPML.bib.

nttps://iml-wg.github.io/HEPML-LivingReview/
nttps://github.com/iml-wg/HEPML-LivingReview
nttps://arxiv.org/abs/2102.02770
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Differential Cross Section Measurements
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Differential Cross Section Measurements \

This is the bread and butter of the
measurement program at the LHC!

The key component of this is the correction of
detector effects. This allows for the data to be
compared with other experiments and with predictions.

correction of detector effects = unfolding



The Unfolding Challenge

Want this Measure this




The Unfolding Challenge

Usual solution:

A
We pick O(1)
observables
and bin them
into O(10) bins

dN/dx




The Unfolding Challenge

Usual solution:
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The Unfolding Challenge

Can we go unbinned?



Unbinned Unfolding

There were some early proposals for unbinned unfolding™ but as
far as | am aware, they were not used for any measurements.

However, recent innovations in machine learning and
resulted in new methods for unbinned unfolding,
which are being used for data analysis+ (!)

The goal of this discussion is to propose a common way for
publishing unbinned results to maximize their science potential

We need input from both experimentalist and theorists (!)

*see L. Lindemann and G. Zech, NIM A 354 (1995) 516 & related
tsee https://www-h1.desy.de/h1/www/publications/htmlisplit/H1prelim-21-031.long.html



Publishing Binned Results

How do we publish binned results?

& HEPData

Repository for publication-related High-Energy Physics data

Search on 9427 publications and 96116 data tables.

Data from the LHC




Publishing Binned Results

< Hide Publication Information

Properties of g — bb at small opening angles
in pp collisions with the ATLAS detector at
V8 =13 Tev

The ATLAS collaboration

Aaboud, Morad , Aad, Georges , Abbott, Brad , Abbott, Dale Charles ,
Abdinov, Ovsat , Abeloos, Baptiste , Abhayasinghe, Deshan Kavishka ,
Abidi, Syed Haider , Abouzeid, Ossama , Abraham, Nicola

Phys.Rev.D 99 (2019) 052004, 2019.

https://doi.org/10.17182/hepdata.85697

|+ Rivet Analysis

Abstract (data abstract)
CERN-LHC.

The fragmentation of high energy gluons at small opening angles is
largely unconstrained by present measurements. Gluon splitting to b-
quark pairs is a unique probe into the properties of gluon
fragmentation because identified b-tagged jets provide a proxy for the
quark daughters of the initial gluon. In this study, key differential
distributions related to the g->bb process are measured using 33/fb of
sqrt(s)=13 TeV pp collision data recorded by the ATLAS experiment at
the LHC in 2016. Jets constructed from charged-particle tracks,
clustered with the jet anti-kt algorithm with radius parameter R=0.2,
are used to probe angular scales below the R = 0.4 jet radius. The
observables are unfolded to particle level in order to facilitate direct
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Publishing Binned Results
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YAML with resefirce files

Il YAML files with

0.2} metadata, bin
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e contents, and
Y

0.6} uncertainties




How to represent unbinned data?

It the data can be fit with a function, you could
publish the function (e.qg. if it is a NN, you could
publish the architecture and weights).

Another natural representation that doesn't
require a function fit is to publish data
sampled from the unfolded result.

T

My proposal is based on this idea.



Proposal 50

N

As in HEPData, | propose there is a "submission”
YAML file with the same measurement metadata.

Each submeasurement™ also has some metadata & points
to a data file. In HEPData, the data ftile is itself a YAML file.

The tiles will have data with the “shape” [([M+1) x N(k+1)]

...where N Is the number of sampled events
and M is the number of systematic uncertainties

and k is the number of dimensions per event

*this could be a single observable, or many observables



Proposal 51

The files will have data with the “shape” [(M+1) x N(k+1)]

Each event has k floats® and 1 event weight

There are N events

This is repeated for each of the M systematic uncertainties

For representations that don't have weights, the weights
will be set to 1. For representations that only use
weights, there will be M copies of the original array.

| have not thought deeply about file formats (npy, root,
hdf5) and would be happy to hear opinions.

*For variable-length measurements, perhaps should use variable-length arrays like awkward for storage



https://awkward-array.readthedocs.io/en/latest/

Proposal - uncertainties

The submission YAML should give metadata
about which uncertainties are included.

For statl

and t
ta

stical uncertainties, there should be Q replicas
ne uncertainty in a given bin is computed by

KIng the standard deviation over replicas.

For systematic uncertainties, the difference between the
nominal and varied bin content is the uncertainty.

There should be warnings in metadata and/or
inflated uncertainties in regions of phase space
that should not be studied with the data.



Proposal - where to store?

/Zenodo Is a very natural location. Maybe the
submission YAML can also be hosted on HEPData
and linked to Zenodo for each searching?



https://zenodo.org

Proposal - example

In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

In [2]: x = np.random.normal(®,1,10000)

In [3]: w = np.abs(x)**0.2
w_syst_up = np.abs(x)#*%0.3
w_syst_dn = np.abs(x)#*%0.1

In [4]: plt.hist(x,bins=np.linspace(-3,3,10),alpha=0.5)
plt.hist(x,bins=np. linspace(-3,3,10),weights=w,histtype="step",color="black")
n_syst_up,b=np.histogram(x,bins=np. linspace(-3,3,10),weights=w_syst_up)
n_syst_dn,_=np.histogram(x,bins=np. linspace(-3,3,10),weights=w_syst_dn)
for i in range(len(b)-1):
plt.fill_between([b[i],b[i+1]],n_syst_dn[i],n_syst_up[i],color="black",alpha=0.3)
plt.xlabel("X")

In [5]: d = {"nominal":Xx,
“"nominalw":w, 2500 1
"syst_up":x,
"syst_upw'":w_syst_up,
"syst_dn":x,
"syst_dnw":w_syst_dn} 2000 A

In [6]: df = pd.DataFrame(data=d)

1500 -
In [7]: df
Out[7]:
nominal nominalw syst_up syst upw syst_dn syst dnw 1000
0 0.731914 0.939490 0.731914 0.910622 0.731914 0.969273
1 0.146232 0.680783 0.146232 0.561711 0.146232 0.825096 S00 A
2 -0.629654 0.911634 -0.629654 0.870423 -0.629654 0.954795
3 0.581001 0.897089 0.581001 0.849675 0.581001 0.947148 l_ —
O T 1 4 T 1 T 1
4 -0.321038 0.796730 -0.321038 0.711159 -0.321038 0.892597 -3 -2 -1 0 1 2 3
X






