MC Generators: Theoretical Progress

Simon Plätzer Particle Physics — University of Vienna

at the Physics at TeV Colliders 2021 Les Houches/digital | 16 June 2021

A biased, personal selection (no exhaustive reference lists), and based on discussions with Josh McFayden and Frank Siegert.

 $d\sigma \sim L \times d\sigma_H(Q) \times PS(Q \rightarrow \mu) \times MPI \times Had(\mu \rightarrow \Lambda) \times \dots$

Recent Questions & Development

Showers rule!

- Accuracy/Precision
- Spin & colour correlations
- New Paradigms
- Unstable particles
- Electroweak contributions
- Non-perturbative interplay

This shouldn't imply that we should not further explore the interplay of showers and matching/merging (see Alex's talk, as well).

25-27 May 2021 Europe/Zurich timezone

MC generator overview

14:00

https://indico.cern.ch/event/1018828/timetable/#20210525.detailed

14:00	Electroweak corrections and multijet merging	Enric
	The PanScale shower approach	Fier Fran
	Boosted Higgs Production in Vector Boson Fusion	Silvia Ferr
15.00	Parton-Shower Effects in Higgs Production via Vector-Boson Fusion	Johan
	Spin correlations in the PanScales parton showers and jet observables	R
	Break	
	Sector showers with fixed-order corrections	Chri
16123	Subleading colour effects in the PanScales parton showers and beyond	Luc
	Improved dipole showers	
	Subleading effect in parton showers	Da

Pressing issues in parton showers

NLO with matching

NLL with coherent branching Issues in dipole showers

Understand and decide on accuracy of (existing) parton shower algorithms, take as a starting point for incremental improvements.

[Dasgupta, Dreyer, Hamilton, Monni, Salam et al. — JHEP 09 (2018) 033, …] [Hoang, Plätzer, Samitz — JHEP 1810 (2018) 200] [Bewick, Ferrario, Richardson, Seymour — JHEP 04 (2020) 019]

Issues in coherent branching LL with dipole showers

Pressing issues in parton showers

Understand and decide on accuracy of (existing) parton shower algorithms, take as a starting point for incremental improvements.

[Dasgupta, Dreyer, Hamilton, Monni, Salam et al. — JHEP 09 (2018) 033, …] [Hoang, Plätzer, Samitz — JHEP 1810 (2018) 200] [Bewick, Ferrario, Richardson, Seymour — JHEP 04 (2020) 019]

[Monni — PSR

2	1

Evolution equations for coherent branching jet mass distribution

$$J(s,Q^{2}) = \delta(s) + \int_{0}^{Q^{2}} \frac{\mathrm{d}\tilde{q}^{2}}{\tilde{q}^{2}} \int_{0}^{1} \mathrm{d}z P_{qq} \Big[\alpha_{s} \big(z(1-z)\tilde{q} \big), z \Big] \\ \times \left[\int_{0}^{\infty} \mathrm{d}k'^{2} \int_{0}^{\infty} \mathrm{d}q^{2} \delta \Big(s - \frac{k'^{2}}{z} - \frac{q^{2}}{1-z} - z(1-z)\tilde{q}^{2} \Big) J(k'^{2}, z^{2}\tilde{q}^{2}) J_{g} \right] \\ - J(s,\tilde{q}^{2}) \Big]$$

NLL accurate for global observables with massive quarks, $\alpha_s \to \alpha_s \left(1 + K_g \frac{\alpha_s}{2\pi} \right)$ and if inclusive over secondary soft gluon emission.

Analytically calculate perturbative correction to the top mass as predicted by parton branching algorithms

[Hoang, Plätzer, Samitz — JHEP 1810 (2018) 200]

 $m_t^{\mathrm{MC}} = m_t^{\mathrm{pole}} + \Delta_m^{\mathrm{pert}} + \Delta_m^{\mathrm{non-pert}} + \Delta_m^{\mathrm{MC}}$ $m_t^{\text{CB}}(Q_0) = m_t^{\text{pole}} - \frac{2}{3}Q_0 \ \alpha_s(Q_0) + \mathcal{O}(\alpha_s^2)$

Spin & Colour Correlations

Several improvements on existing shower algorithms

Spin correlations in Herwig's shower modules

[Webster, Richardson - Eur.Phys.J.C 80 (2020) 2]

Similar approach pursued by PanScales team

[Karlberg, Salam, Scyboz, Verheyen — 2103.16526]

Colour matrix element corrections available in dipole-type showers:

Real improved, but virtual still by naive unitarity: not full colour.

[Plätzer, Sjödahl – JHEP 1207 (2012) 042] [Plätzer, Sjödahl, Thoren – JHEP 11 (2018) 009] [Höche, Reichelt — arXiv:2001.11492v2]

Roads to Precision

First steps to doubly unresolved emission kernels:

- Triple collinear splittings
- Double soft (inclusively included in CMW)
- Via antenna functions and matrix element corrections

No unified approach known yet.

Towards second-order showers: unordered contributions

- sector showers allow to include direct $2 \rightarrow 4$ branchings in a simple way
- divide phase space into **strongly-ordered** and **unordered** region
 - s.o. region: only single-unresolved limits
 - u.o. region: only double-unresolved limits
- $2 \rightarrow 4$ branchings important ingredient to NNLO+PS $(+ virtual corrections to 2 \rightarrow 3)$

 Q_A

NLL evolution equation

• e.g. real corr.^{ns}: contributions from two adjacent dipoles

Full-colour structures and kinematics of 2-loop virtual also known.

Soft shower to resum NGL at NLL and LC Observable dependence disentangled in Laplace space

[Monni — PSR 21] [Banfi, Dreyer, Monti — 2104.06416]

Evolution variable must be adjusted (dipole kt of the parent) to guarantee collinear safety for any u(k)

$$u]G_{(ab)2}[Q;u]u(k_{(ab)})$$

 Correct only for correlated contribution to squared amplitude (exponentiation of soft singularities)

$$\bar{w}_{12}^{(0)}(k_a,k_b) = \frac{1}{2}w_{12}^{(0)}(k_a)w_{12}^{(0)}(k_b) + \bar{w}_{12}^{(gg)}(k_a,k_b)$$

Independent contribution correctly treated in LL kernel

[Plätzer, Ruffa — [HEP 06 (2021) 007]

Beyond Current Paradigms

 $d\sigma \sim L \times d\sigma_H(Q) \times PS(Q \rightarrow \mu) \times MPI \times Had(\mu \rightarrow \Lambda) \times ...$

Beyond Current Paradigms

[Nagy, Soper — ...] [De Angelis, Holguin, Forshaw, Plätzer, Ruffa — ...]

$\sigma[u] = \sum \int \operatorname{Tr}\left[\mathbf{A}_{n}\right] u(q_{1}, ..., q_{n}) \mathrm{d}\phi(q_{1}, ..., q_{n})$ \boldsymbol{n} sum over emissions 'density operator' ~ amplitude amplitude+ observable and phase space [Nagy, Soper — ...]

[De Angelis, Holguin, Forshaw, Plätzer, Ruffa — ...]

[De Angelis, Holguin, Forshaw, Plätzer, Ruffa — ...]

$$\mathbf{A}_n(q) = \int_q^Q \frac{\mathrm{d}k}{k} \, \mathbf{D}_n(k) \, \mathrm{P}e^{-\int_q^k \frac{\mathrm{d}k}{k}}$$

Markovian algorithm at the amplitude level: Iterate gluon exchanges and emission.

Different histories in amplitude and conjugate amplitude needed to include interference.

[Nagy, Soper — ...] [De Angelis, Holguin, Forshaw, Plätzer, Ruffa — ...]

 $\frac{k'}{k'}\Gamma(k') = \mathbf{A}_{n-1}(k) \overline{\mathbf{P}}e^{-\int_{q}^{k} \frac{\mathrm{d}k'}{k'}}\Gamma^{\dagger}(k') = \mathbf{D}_{n}^{\dagger}(k)$

Beyond Leading Colour

[Nagy, Soper — ...]

LC+ Approximation

We insert a projection only on the spectator side

$$t_k^{\dagger} | \{c\}_m \rangle \longrightarrow C(l, m+1) t_k^{\dagger} | \{c\}_m \rangle$$
$$\langle \{c'\}_m | t_k \longrightarrow \langle \{c'\}_m | t_k C(l, m+1)^{\dagger}$$

The **operator** C(l, m+1) is defined by it action on the basis states:

$$C(l, m+1) |\{\hat{c}\}_{m+1}\rangle = \begin{cases} |\{\hat{c}\}_{m+1}\rangle & \text{if } l \text{ and } m+1 \text{ are color connected in } \{\hat{c}\}_{m+1} \\ 0 & \text{otherwise} \end{cases}$$

(In string basis l and m+1 are color connected when they are next to each other along the fermion line.)

In the inclusive splitting operator, the color simplifies a lot:

$$\begin{aligned} &[t_l \cdot t_k^{\dagger}] \big| \{c\}_m \big\rangle \longrightarrow [t_l \cdot C(l, m+1)t_k^{\dagger}] \big| \{c\}_m \big\rangle = \big| \{c\}_m \big\rangle \frac{t_l^2}{1 + \delta_{\mathrm{g}f_l}} \\ &\langle \{c'\}_m \big| [t_k \cdot t_l^{\dagger}] \longrightarrow \big\langle \{c'\}_m \big| [t_k C(l, m+1)^{\dagger} \cdot t_l^{\dagger}] = \frac{t_l^2}{1 + \delta_{\mathrm{g}f_l}} \big\langle \{c'\}_m \big| \end{aligned}$$

[Nagy — PSR 19]

8

Beyond Leading Colour

[Nagy, Soper — ...]

0.5

0.6

IC+ Approximation Jet veto in qg to qg scattering. $l \text{ in } {\hat{c}}_{m+1}$

Uses a lattice inspired method from a Langevin formulation.

long the fermion line.)

8

 ${
m g} f_l$

[Nagy — PSR 19]

 $c'\}_m$

[Hatta, Ueda — ...]

Beyond Leading Colour

CVolver library implements numerical evolution in colour space. [Plätzer – EPJ C 74 (2014) 2907]

Resummation of non-global logarithms at full colour:

Avoid complexity which grows with colour space dimensionality:

- Monte Carlo over colour flows,
- events at intermediate steps carry complex weights.

$$\{p_i\}$$
) $\prod_i \theta_{in}(\rho - E_i)$

Full agreement with Hatta & Ueda.

Phenomenological Impact?

Project colour state on low-mass colour singlet systems. Clusters = highly excited hadrons.

Colour reconnection: cluster swaps.

[Gieseke, Kirchgaesser, Plätzer – EPJ C 78 (2018) 99]

Approach colour reconnection from colour evolution: perturbative component? Reconnection amplitude $\boldsymbol{\mathcal{A}}_{\tau \to \sigma} = \langle \sigma | \mathbf{U} \left(\{ \boldsymbol{p} \}, \mu^2, \{ \boldsymbol{M}_{ii}^2 \} \right) | \tau \rangle$ 0.05Strong support ······ Final clusters D 0.04 for geometric 0.03 models from Z colour evolution. 0.02

[Gieseke, Kirchgaesser, Plätzer, Siodmok – JHEP 11 (2018) 149]

2.5

0.01

12.5

Phenomenological Impact?

Project colour state on low-mass colour singlet systems.

models from colour evolution.

[Gieseke, Kirchgaesser, Plätzer, Siodmok – JHEP 11 (2018) 149]

Uncertainties — Perturbative & Non-perturbative

 $d\sigma \sim L \times d\sigma_H(Q) \times PS(Q \rightarrow \mu) \times MPI \times Had(\mu \rightarrow \Lambda) \times ...$

Assume some matter distribution in the proton, and effective multiplicity distribution of additional scatters.

Colour reconnection crucial to describe MinBias and UE data: lack of knowledge about colour correlations.

[Gieseke, Kirchgaesser, Plätzer – EPJ C 78 (2018) 99]

Assume some matter distribution in the proton, and effective multiplicity distribution of additional scatters.

Colour reconnection crucial to describe MinBias and UE data: lack of knowledge about colour correlations.

[Gieseke, Kirchgaesser, Plätzer – EPJ C 78 (2018) 99]

Assume some matter distribution in the proton, and effective multiplicity distribution of additional scatters.

Colour reconnection crucial to describe MinBias and UE data: lack of knowledge about colour correlations.

[Gieseke, Kirchgaesser, Plätzer – EPJ C 78 (2018) 99]

Soft QCD effects are not absent: significant impact on interjet activity and jet shapes. On/off exercise will only hint at their relative importance.

Questions to be raised:

- Quantify impact (and how certain that is)
- Determine interplay with perturbative variations and models
- Watch out for lack of perturbative dynamics beyond current NLO+PS

Benchmark is VBF Z production, but findings should be \sim universal.

Soft QCD effects are not absent: significant impact on interjet activity and jet shapes. On/off exercise will only hint at their relative importance.

Questions to be raised:

- Quantify impact (and how certain that is)
- Determine interplay with perturbative variations and models
- Watch out for lack of perturbative dynamics beyond current NLO+PS

Benchmark is VBF Z production, but findings should be \sim universal.

Soft QCD effects are not absent: significant impact on interjet activity and jet shapes. On/off exercise will only hint at their relative importance.

Questions to be raised:

- Quantify impact (and how certain that is)
- Determine interplay with perturbative variations and models
- Watch out for lack of perturbative dynamics beyond current NLO+PS

Benchmark is VBF Z production, but findings should be \sim universal.

Model variations

Strategy

- Vary colour reconnection and MPI parameters to stay within ~ 10% agreement of typical tuning observables
- Vary perturbative scales, specifically shower hard scale
- Full NLO+PS study including shower variations

Tagging jet distributions mostly stable

[Bittrich, Kirchgaesser, Papaefstathiou, Plätzer, Todt — in preparation]

Model variations

Third jet Zeppenfeld variable between perturbative and MPI variations.

Loose selection

Tight selection

0.04

[Bittrich, Kirchgaesser, Papaefstathiou, Plätzer, Todt — in preparation]

R=0.7

R=0.4

Algorithms & Efficiency

Sudakov-type densities central to Showers

Negative P or unknown overestimate requires weighted veto algorithm, with in principle arbitrary proposal kernel and veto probability.

[Olsson, Plätzer, Sjödahl — EPJC 80 (2020) 10] [Plätzer, Sjödahl — EP] Plus 127 (2012) 26] Also cf. shower variations e.g. [Bellm, Plätzer, et al. — Phys.Rev.D 94 (2016) 3, 034028]

 $Q' \leftarrow Q, w \leftarrow w_0$ loop

> A trial splitting scale and variables, q, z, are generated according to $S_R(q|Q', z, x)$, for example using Alg. 1.

if $q = Q_0$ then

There is no emission and the cut-off scale Q_0 is returned while the event weight is kept at w.

else

if $\mathbf{rnd} \leq \epsilon$ then

The trial splitting variables q, z are accepted, and

$$w \leftarrow w \times \frac{1}{\epsilon} \times \frac{P(Q', z, x)}{R(Q', z, x)}.$$
 (3)

else

The emission is rejected, and the algorithm continues with

$$w \leftarrow w \times \frac{1}{1 - \epsilon} \times \left(1 - \frac{P(q, z, x)}{R(q, z, x)}\right)$$
$$Q' \leftarrow q. \tag{4}$$

end if end if end loop

Weighted Veto Algorithms & Resampling

[Andersen, Gütschow, Maier, Prestel — EPJ C 80 (2020) 11]

Possible Topics of Activity

- Non-perturbative uncertainties
 - common hadronisation interface and variations
 - theoretical understanding
 - = differences in tuned comparisons
 - = pheno impact for certain classes of processes (e.g. VBF/VBS)
- Shower accuracy studies
 - = comparing different schemes on higher orders, evaluate phenomenological impact
 - Subleading colour and interplay with colour reconnection
 - New sampling methods and algorithms versus machine learning techniques
 - Accuracy of merging resummed calculation versus ME+PS paradigms
- Photon physics, modelling of fragmentation
- Heavy flavour matching
 - review of existing measurements
 - = Connecting precision calculation, fragmentation and decays
 - partons at 100 TeV
- Common LHC event bazaar
- Status and needs for electroweak corrections and radiation in shower algorithms
- Machine learning and adaptive Monte Carlo methods

Possible Topics of Activity

- Non-perturbative uncertainties
 - common hadronisation interface and variations
 - theoretical understanding
 - = differences in tuned comparisons
 - = pheno impact for certain classes of processes (e.g. VBF/VBS)
- Shower accuracy studies
 - = comparing different schemes on higher orders, evaluate phenomenological impact
 - Subleading colour and interplay with colour reconnection
 - New sampling methods and algorithms versus machine learning techniques
 - Accuracy of merging resummed calculation versus ME+PS paradigms
- Photon physics, modelling of fragmentation
- Heavy flavour matching
 - review of existing measurements
 - = Connecting precision calculation, fragmentation and decays
 - partons at 100 TeV
- Common LHC event bazaar
- Status and needs for electroweak corrections and radiation in shower algorithms
- Machine learning and adaptive Monte Carlo methods

[from LH wiki — Huston + McFayden / Siegert / Plätzer]

Revisit the Accords?

2009

THE TOOLS AND MONTE CARLO WORKING GROUP **Summary Report**

- **INTERFACES**
- A STANDARD FORMAT FOR LES HOUCHES EVENT FILES, VERSION 2
- 3. A DRAFT RUNTIME INTERFACE TO COMBINE PARTON SHOWERS AND NEXT-**TO-LEADING ORDER QCD PROGRAMS**

2011 & 2013

Matchbox's Low-level interface, later inserted **BLHA** as intermediate level

THE SM AND NLO MULTILEG AND SM MC WORKING GROUPS: **Summary Report**

Les Houches 2013: Physics at TeV Colliders Standard Model Working Group Report

Ι	NLO automation and (N)NLO techniques	
1	The first use case for BLHA2 extensions: NJET plus $\text{Herwig}++/\text{Matchbox}^3$	•
2	GoSam plus Herwig++/Matchbox ⁴ \ldots	•

A proposal for a standard interface between Monte Carlo tools and one-loop programs

T. Binoth

The University of Edinburgh, Edinburgh EH9 3JZ, Scotland, United Kingdom

Binoth Les Houches Accord LHEF Files

Update of the Binoth Les Houches Accord for a standard interface between Monte Carlo tools and one-loop programs

Do these still fit our needs? New paradigms, new capabilities, efficient storage/generation ...

Thanks!

