UNIVERSITY OF SUSSEX

MC generators: Experimental bottlenecks and future needs

THE ROYAL SOCIETY

Physics at TeV Colliders 2021 16/06/2021

$\bigcirc PS/Had/UE \mid H \rightarrow \gamma \gamma VBF$

<u>HIG-19-015</u>

0.05

ATLAS-CONF-2020-026

$\bigcirc PS/Had/UE | ttH & H \rightarrow \mu\mu$

PS/Had/UE | Top mass TOPQ-2017-03

			$\sqrt{s} = 7$ TeV		$\sqrt{s} = 8 \text{ TeV}$		7
	Event selection		Star	ndard	Standard	BDT	1
.)	$m_{\rm tot}$ result [GeV]			72.33	171.90	172.08	1
1.2)	Statistics			0.75	0.38	0.39	1
2.0)	$-Stat. comp. (m_{top})$			0.23	0.12	0.11	
1.0)	-Stat. comp. (JSF)			0.25	0.11	0.11	
12)	- Stat. comp. (bJSF)			0.67	0.34	0.35	
1.3)	Method			0.10	0.04 ± 0.11	0.13 ± 0.11	
0.7)	Signal Lique Carlo generator			0.21	0.50 ± 0.17	0.16 ± 0.17	1
1.0)	Hadronization		$0.18 \pm$	0.12	0.05 ± 0.10	0.15 ± 0.10	
	Initial- and final-state QCD radiation		$0.32 \pm$: 0.06	0.28 ± 0.11	0.08 ± 0.11	
0.0)	Underlying event		$0.15 \pm$: 0.07	0.08 ± 0.15	0.08 ± 0.15	
	Colour reconnection		$0.11 \pm$: 0.07	0.37 ± 0.15	0.19 ± 0.15	
	Porton distribution function		$0.25 \pm$: 0.00	0.08 ± 0.00	0.09 ± 0.09	
	Background non-validation		$0.10 \pm$	0.00	0.04 ± 0.00	0.08 ± 0.00	7
	W+jets shape		$0.29 \pm$: 0.00	0.05 ± 0.00	0.11 ± 0.00	
	Fake leptons shape		$0.05 \pm$: 0.00	0	0	
	Jet energy scale		$0.58 \pm$: 0.11	0.63 ± 0.02	0.54 ± 0.02	
	Relative b -to-light-jet energy sca	le	$0.06 \pm$: 0.03	0.05 ± 0.01	0.03 ± 0.01	
	Jet energy resolution		$0.22 \pm$: 0.11	0.23 ± 0.03	0.20 ± 0.04	
	Jet reconstruction efficiency		$0.12 \pm$: 0.00	0.04 ± 0.01	0.02 ± 0.01	
	Jet vertex fraction		$0.01 \pm$: 0.00	0.13 ± 0.01	0.09 ± 0.01	
	b-tagging		$0.50 \pm$: 0.00	0.37 ± 0.00	0.38 ± 0.00	
185	Leptons		$0.04 \pm$: 0.00	0.16 ± 0.01	0.16 ± 0.01	
[GeV]	Missing transverse momentum		$0.15 \pm$: 0.04	0.08 ± 0.01	0.05 ± 0.01	
	Pile-up		$0.02 \pm$: 0.01	0.14 ± 0.01	0.15 ± 0.01	_
	Total systematic uncertainty		$1.04 \pm$: 0.08	1.07 ± 0.10	0.82 ± 0.06	4
	lotal		$1.28 \pm 1.28 $	1D	1.13 ± 0.10	0.91 ± 0.06	
		$\delta m_{\rm t}^{\rm 2D}$	δ JSF ^{2D}	$\delta m_{\rm t}^{\rm 1D}$	$\delta m_{\rm t}^{\rm hyb}$ $\delta M_{\rm t}^{\rm hyb}$	JSF ^{hyb}	
		[GeV]	[%]	[GeV]	[GeV]	[%]	
	Method calibration	0.03	0.0	0.03	0.03	0.0	
	JEC (quad. sum)	0.12	0.2	0.82	0.17	0.3	
	– Intercalibration – MPFInSitu	-0.01 -0.01	0.0 0.0	+0.16 +0.23	+0.04 +0.07 +	+0.1 +0.1	
	– Uncorrelated	-0.12	-0.2	+0.20	+0.15	+0.3	
	Jet energy resolution	-0.18	+0.3	+0.09	-0.10 - 0.02	+0.2	
	Pileup	-0.07	+0.1	+0.01	-0.05	+0.1	
	All-jets background	0.01	0.0	0.00	0.01	0.0	
	ℓ+jets Background	$+0.01 \\ -0.02$	0.0	+0.00	+0.01 -0.01	0.0	
	ℓ +jets Trigger	0.00	0.0	0.00	0.00	0.0	
	Lepton isolation	0.00	0.0	0.00	0.00	0.0	
	Modeling uncertainties	2.20		0.01			
	JEC flavor (linear sum) – light guarks (uds)	-0.39 + 0.11	$^{+0.1}_{-0.1}$	$-0.31 \\ -0.01$	-0.37 - 0.07	$+0.1 \\ -0.1$	
	– charm	+0.03	0.0	-0.01	+0.02	0.0	
	– bottom – gluon	-0.31 -0.22	0.0 + 0.3	-0.31 + 0.02	-0.31 -0.15	0.0 + 0.2	
	b jet modeling (quad. sum)	0.08	0.1	0.04	0.06	0.1	
	– b frag. Bowler–Lund – b frag. Peterson	-0.06 -0.03	+0.1	-0.01	-0.05 -0.02	0.0	
	– semileptonic b hadron decays	-0.04	0.0	-0.00	-0.04	0.0	
	PDF Rop. and fact. scalos	0.01	0.0	0.01	0.01	0.0	
	ME/PS matching	-0.10 ± 0.01	0.0 + 0.1	$+0.02 \pm 0$	$0.01 + 0.07 \pm 0.07$	+0.1	
	ME generator	$+0.16\pm0.2$	21 + 0.2	$+0.32\pm0$	$0.13 + 0.21 \pm 0.18$	+0.1	
	FSR PS scale	$+0.07 \pm 0.0$		$+0.10\pm($	$0.05 \pm 0.07 \pm 0.07$ $0.04 \pm 0.12 \pm 0.06$	-0.3	
	Tor $\mu_{\rm MIR} \mu_{\rm T}$	+0.01	-0.1	-0.06		01	
	Early resonance decays	-0.06 ± 0.0 -0.20 ± 0.0	07 + 0.1 08 + 0.7	$+0.00\pm0$ $+0.42\pm0$	$0.05 - 0.04 \pm 0.06$ $0.05 - 0.01 \pm 0.07$	+0.1	
	CR modeling (max. shift)	$+0.37\pm0.0$	09 -0.2	$+0.22\pm0$	$0.06 + 0.33 \pm 0.07$	-0.1	
	- "gluon move" (ERD on) - CcDiscripted" (ERD on)	$+0.37 \pm 0.0$ -0.11 ± 0.0	-0.2 09 -0.1	$+0.22 \pm 0$ -0.21 ± 0	$0.06 + 0.33 \pm 0.07$ $0.06 - 0.14 \pm 0.07$	-0.1	
	JO Total systematic	0.71	1.0	1.07	0.61	0.7	
	Total (expected)	0.08 0.72	$\begin{array}{c} 0.1 \\ 1.0 \end{array}$	0.05 1.08	0.07 0.61	0.1 0.7	

Experimental un
Method calibration
JEC (quad. sum)
– Intercalibration
– MPFInSitu
 – Uncorrelated
let energy resolu
h tagging
Pileup
All-iets backgrou
All-jets trigger
l+iets Backgroun
ℓ +jets Duckgroun
Lepton isolation
Lepton identifica
Modeling uncert
IFC flavor (lipoa
light quarks (u
- light quarks (ut
- charm
- Dottom
– gluon
b jet modeling (q
– b frag. Bowler–
– b frag. Petersor
- semileptonic b
PDF
Ren. and fact. sca
ME/PS matching
ME generator
ISR PS scale
FSR PS scale
Top $p_{\rm T} = \mu_{\rm T} p_{\rm T}$
Underlying even
Early resonance
CR modeling (ma
– "gluon move" (
- Que incovired
Total systematic
Statistical (expec
Total (expected)

Statistical uncoded and		0.5
Simulation uncertainties		
Shower and hadronisation	0.4	0.3
Colourse connection	0.4	201
Underlying event	0.3	0.2
Signal Monte Carlo generator	0.2	0.2
Proton PDF	0.2	0.2
Initial- and final-state radiation	0.2	0.2
Monte Carlo statistics	0.2	0.2
Background	< 0.1	< 0.1
Detector response uncertainties		
Jet energy scale (including b-jets)	0.4	0.4
Jet energy resolution	0.2	0.2
Missing transverse momentum	0.1	0.1
b-tagging efficiency and mistag	0.1	0.1
Jet reconstruction efficiency	< 0.1	< 0.1
Lepton	< 0.1	< 0.1
Method uncertainties		
Unfolding modelling	0.2	0.2
Fit parameterisation	0.2	0.2
Total experimental systematic	0.9	1.0
Scale variations	(+0.6, -0.2)	(+2.1, -1.2)
Theory $PDF \oplus \alpha_s$	0.2	0.4
Total theory uncertainty	(+0.7, -0.3)	(+2.1, -1.2)
Total uncertainty	(+1.2, -1.1)	(+2.3, -1.6)

top mass (soft lepton)

PS/Had/UE | VBF modelling

LH2017 Proceedings

PS/Had/UE | VBF modelling

LH2017 Proceedings

PS/Had/UE | HL-LHC

-	0
UEPS ttH	
photon isolation efficiency	
jet pileup ρ-topology	
VH HF content	
b-jet tagging efficiency 1	
ggF HF content	
jet flavour composition ggF	
pileup reweighting	
jet flavour composition ttH	
photon ID efficiency	
	 Pull ± 1σ [
	ATLAS Prelim Projection from Run √s=14TeV, 3000 fb

"Why are these uncertainties dominant in so many LHC analyses; can this situation be improved?"

- Joey Huston

Well let's start at the beginning Do we understand where the large uncertainties are coming from?

What to do?

- Comparing Pythia to Herwig
 - We know it's bad from a physics point of view
 - We know it's bad from a statistical point of view
 - We have strong indications that it's over-estimating our uncertainties
- So why do we continue?!
 - Because it's easy and everything else is hard..?
 - Because the tools are complicated?
- Because we're attached to our tunes?

ONEDOESNOTSINFLY

Factorisation

- Of course what we really want to do is factorise the different physics/ sources of uncertainty
 - Shower evolution
 - Hadronisation
 - Underlying event
 - Color reconnection
 - Details of matching setups

Do we have the tools to do this?

Factorisation Shower algorithm Even in Les Houches 2015 this was being studied:

LH2015 Proceedings

p_{TZ} (Born) do/dt ATLAS 1/0 Pythia 10 Pythia µ=0.5p_ ---- Pythia µ=2.0p 10-2 10^{-3} 10-4 10-5 Data from JHEP09(2014)145 10^{-6} Pythia 8.219 10ry/Dai p→Z→leptons dp/90.08 p_{TZ} (Born) 10 ATLAS 2 ---- Pythia ---. Pythia μ=0.5p 0.06 ---- Pythia µ=2.0p 0.04 0.02 Data from JHEP09(2014)145 Pvthia 8.219 -0.021.4 Theory/Data 0.8 30 20

Josh McFayden | LH 2021

arXiv:1605.08352

7000 GeV

p→Z→leptons

Factorisation | Fragmentation • We have ways to assess the fragmentation uncertainties:

Factorisation | UE / Colour reconnection We have tools to vary MPI and colour

- So what's the problem?
- In many cases new generator configurations take a long time to setup and validate
- It can also be very costly in terms of grid resources to produce completely separate samples
- This implies the need for:
 - More guidance on what variations are most important.
 - Simpler interfaces?
 - Maximal re-use of events?

- Issues that have been discovered in the past related to this:
 - Incoherent parameter settings for apples-toapples comparisons
 - Incoherent assessment of uncertainties leading to illogical results.

So what work was there already in this area?

It turns out quite a lot...

Existing Studies | NLO+PS vs FO NLO+PS predictions agree very well with each other and with the FO predictions (to varying degrees depending on the radius parameter).

Existing Studies | NP corrections

- Non-perturbative predictions compared as a function of jet size R and jet p_T
- Very good agreement between string and cluster fragmentation
- Also between the full nonperturbative corrections, with fragmentation and MPI, between Sherpa and Herwig.

arXiv:1903.12563

Existing Studies | Tunes and scale vars

- The naive "central" variation bands of HERWIG and PYTHIA are different
- The size of the retuned uncertainties is comparable between the two simulations.
 - This convergence of two very different models suggests that comparing retuned variations might provide a better assessment of MCEG uncertainties in the future.

LH2017 Proceedings

Existing Studies Perturbative uncs in ttbar Aim to establish if Transverse momentum distribution of the $t\bar{t}$ -pair 20 IO perturbative variations from 10 dơ/dp_T [pb/GeV nominal 7/dpT [pb/(NLO-7-pts different PS algorithms 10 10 10 obtained with different 10 10 10 10 generators are compatible 1.2 Ratio Ratio First step in systematically 0.9 comparing full PS models $p_{\rm T}(t\bar{t})$ [GeV] ransverse momentum distribution of the *tt*-pair $7/dp_T [pb/GeV]$ 10 10⁻² /dp1 [pp/ Pythia-AP-Kernels A systematic look at all isr-3-pts fsr-3-pts 10-3 possible/reasonable 10 10 10 variations for a limited setup 10 10 1.05 Powheg+Pythia8 w/o 1.2 Ratio 1.1

hadronisation or MPI

What to do?

- Try to lay out minimal/maximal set of variations needed for a proper assessment of the uncertainties
 - Two levels:
 - Wishlist write down what you want ideally want for each generator
 - Pheno studies comparing setups
 - Essentially an extension of existing LH studies.
- Link to specific pheno study?
 - VBS/VBF?
 - Heavy flavour?
- Tools: A common hadronisation interface for Herwig/Pythia/Sherpa?
 - Base class in HepMC or another common package?

Heavy Flavour

Heavy Flavour

- There are several issues surrounding heavy quark/flavour modelling that are of high priority for experiments
 - ttbb modelling for ttH
 - Vbb for VHbb
 - VVbb for Top+X
 - W+D for strange PDF and eventually Hcc
 - Treatment of off-shell production and top decays for top quark measurements

Heavy Flavour | Global analysis?

- At LH2017 we started trying to initiate a "global analysis" using all available heavy hadron measurements
 - Is this something we want to revisit?!
- Two potential goals:
 - Determine systematic uncertainty recipe
 - Tune to the data

LH2017 Proceedings

Heavy Flavour | Global analysis?

- At LH2017 we started trying to initiate a "global analysis" using all available heavy hadron measurements
 - Is this something we want to revisit?!

Two potential goals:

- Determine systematic uncertainty recipe
- Tune to the data

Worth coming back to?

New measurements

Heavy Flavour | Global analysis? At LH2017 we started trying to initiate a

- At LH2017 we started trying to initi "global analysis" using all available heavy hadron measurements
- Is this something we want to revisit?!
- Two potential goals:
 - Determine systematic uncertainty recipe
 - Tune to the data
- Worth coming back to?
 - New measurements
 - New tools

arXiv:1904.09382

Heavy Flavour | W+D

- Have new NNLO calculations on the market for e.g. W+c
- But measurements at Hadron level are of high priority
 - Need to connect precise analytical calculations to fragmentation functions (and possibly decay packages from MC generators?)
- Otherwise can't be used in PDF fits See Miha's talk for more information.

V + jet PRODUCTION @ NNLO QCD WITH FLAVOUR

NNLO QCD now well-established with 2 independent calculations:

... now comes in different flavours:

• Z+b-jet

Gauld, Gehrmann-De Ridder, Glover, A

W+c-jet

Zzakon, Mitov, Pellen, Poncelet '20

• identify flavour of a jet ("tag")

Computing considerations

- We know that resource projections for HL-LHC look very challenging
- HEP Software Foundation Event Generators WG recently published: "Challenges in MC event generator software for HL-LHC" [2004.13687]
 - Details quite a lot of the areas for further focus
 - More efficient software
 - Porting to GPUs
 - Use of ML tools
- LH-specific possibilities
 - Benchmarking and link to ML tools
 - Common samples

[MHS06-years sumption Con Annual CPU

Computing considerations

- Benchmarking
 - Create code kernels for different generation steps for benchmarking/porting?
 - E.g. simple case and realistic case for each step
 - Use for classification of ML tools/approaches
 - Critical assessment/comparison against existing MC techniques (e.g. Vegas, FOAM, EXSAMPLE, ...) Isolated fragments could also be used for porting
 - to different architectures.
- Common samples
 - Sharing events between ATLAS and CMS
 - Progress in ttbar: <u>Top LHC WG talk</u>
 - Sharing between hadronisation algorithms?

Back-ups

36

Solution Limited MC stats

l	
	(

		Source of u	ncertainty	Avg.
		Total	0.	
		Statistical		0.
		Systematic		0.
		Experiment	al uncertainties	
		Small- R jets	S	0.
		Large- R jet	S	0.
		$E_{\mathrm{T}}^{\mathrm{miss}}$		0.
		Leptons		0.
		-	<i>b</i> -jets	0.
	Lamma Diat	b-tagging	c-jets	0.
	Large – R jet		light-flavour jets	0.
	Anti $-k_t \mathbf{R} = 1.0$		extrapolation	0.
	$p_T > 250 \text{ GeV}$	Pile-up		0.
b	2 VR track - iots	Luminosity		0.
0	2 vit track – jeus	Theoretical	and modelling unce	rtaintie
		Signal		0.
		Background	\mathbf{S}	0.
		$\hookrightarrow Z + \text{jets}$		0.
		$\hookrightarrow W + \text{jet}$	S	0.
		$\hookrightarrow t\bar{t}$		0.
*		\hookrightarrow Single to	op quark	0.
\sim_{ℓ}	$\operatorname{High} p_T \operatorname{W} \operatorname{or} Z$	\hookrightarrow Diboson		0.
\backslash	$p_{\pi}^{V} > 250 \text{GeV}$	\hookrightarrow Multijet		0.
$\overline{\ell}$	PT > 200 GOV	MC statistic	cal	0.

