Top (+X) production: current bottlenecks and future prospects

RDIJE

- Overview (very short and selective)
- Challenges ahead
- Opportunities
- Conclusions & Outlook

Andy Jung (Purdue University)

Physics at TeV Colliders 2021 workshop

Thanks my CMS co-convener (Nadjieh) and ATLAS conveners for input June 15th, 2021

The present...LHC Run II

CMS Integrated Luminosity, pp, $\sqrt{s}=$ 7, 8, 13 TeV

Challenges ahead:

- Experimental systematic uncertainties
- More "global" approaches (kinematic ranges, EFT)
- Theory uncertainties

<u>Opportunities</u>

• Vast top quark sample...

√s [TeV]

Top physics: Opportunities and Challenges

1.6

1.2

If_{LV}V_{+h}I

1.8

0.4

0.6

0.8

Single Top Quark Production

Data

-0.2

-0.1

Challenges and Opportunities:

A. Jung

 $|V_{tb}| = 1.00 \pm 0.01 \text{ (stat + syst)} \pm 0.03 \text{ (nonprofiled)}$

Impressive amount of differential measurements in single top! tt+tW interference terms become relevant to describe data!

CMS

 μ +3j1t

Preliminary

-0.4

-0.3

Differential cross sections

- Enormous amount of differential cross section measurements at ATLAS & CMS – impossible to summarize in 1 slide.
 [CMS-PAS-TOP-20-001]
- Expect even more *n*-dimensional distributions

• Improve signal modeling, seen 1st triple and double differential measurements!

- Getting more precise in boosted regime
- On CMS site: 1st simultaneous measurement of resolved and boosted

Challenges in multi-D x-sec's

- More global approach is needed to fully harvest the wealth of top data
 - Theory setup & uncertainties critical
 - As an example: MATRIX
 - Great tool, excellent to have
 - Struggling on CPU time/demands, 10k jobs on lxplus → 2% stat, 10x not doable as normal user. Even more of troubling for uncertainties
- Recent CMS multi-D measurement
 - Top pT spectra up to 1.5 TeV

A. Jung

137 fb⁻¹ (13 TeV)

137 fb⁻¹ (13 TeV) 137 fb⁻¹ (13 TeV) +jets 50 < p_(tt) < 120 GeV ton level • Data Sin (0 ctot

<u>tī+X: Highlights</u>

Top quark threshold region

- Recent experimental results Extract y_{t} from template fit:
- CMS 13 TeV data, I+jets
- Recover 3 jet bin and use
 57 bins to fit
- Relies on threshold region
- Also relevant to search for toponium as presented at a joint LHCtopWG seminar by Fuks et al.

- Threshold region is difficult to access at the
- experiments
 - Modeling has impact on parameter extraction
 - Future exciting searches rely on threshold region

Top Quark Asymmetries

Interference appears at NLO QCD:

- This is a forward-backward asymmetry at Tevatron
 No valence anti-quarks at LHC → t more central
- SM predictions at NLO (QCD+EWK)
 → Tevatron: AFB ~ 10 % vs. LHC: AC ~ 1 %

(These are NNLO pQCD predictions, there is also the PMC approach)

 $A_{\rm FB}^{t\bar{t}} = \frac{N(\Delta y_{t\bar{t}} > 0) - N(\Delta y_{t\bar{t}} < 0)}{N(\Delta y_{t\bar{t}} > 0) + N(\Delta y_{t\bar{t}} < 0)}$

• Experimentally: Asymmetries based on decay leptons or fully reconstructed top quarks $A_{\rm C} = A_{\rm C} = A_{\rm C} = \frac{N(\Delta|\eta_{\ell}| > 0) - N(\Delta|\eta_{\ell}| < 0)}{N(\Delta|\eta_{\ell}| > 0) + N(\Delta|\eta_{\ell}| < 0)}$

Top Quark Properties...

Production asymmetry due to NLO interferences

Top Quark Properties...

Production asymmetry due to NLO interferences

<u> Top mass – direct methods</u>

<u> Top mass – alternative</u>

A. Jung

- Self-consistency test of the SM & stability of the EW vacuum both rely/use pole mass – what we measure depends on the method
 - Indirect extractions \rightarrow top quark pole mass
 - Direct methods \rightarrow "MC" mass, close to pole mass
- Precise top mass from cross sections (CMS) or leptonic variables (ATLAS):
 both at the level of 0 506
 - \rightarrow both at the level of 0.5% [arXiv:1904.05237] [ATLAS]
 - \rightarrow Limited by B-hadron & Color reconnection
 - → Exciting activities by theory community (parton showers, b jets/modeling)

B fragmentation

- Exciting activities by theory community (parton showers, b jets/modeling)
- Novel measurements directly measuring b-fragmentation
- CMS: Measurement with dileptonic and semileptonic tt events
 CMS-PAS-TOP-18-012
 - Charm mesons (D0, J/ ψ) reconstructed inside b-quark jets by charged-particles
- ATLAS: dilepton events

Effective field theory...

EFT is now widely used to search for offresonance effects due to BSM contributions

 More global approaches to capture experimental correlations, EFT at particle level to boost sensitivities

A. Jung

Associated top production to probe for BSM effects
Consistent treatment of experimental correlations
[CMS-PAS-TOP-19-001]

 $\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{C_i^{(0)} \mathcal{O}_i^{(0)}}{\Lambda^2}$

Effective field theory...

 Machine Learning pushes limits beyond of whats established as standard, e.g. tZq and C(tZ) coefficient.

 Improvements compared to associated top production with additional leptons

JHEP 03 (2021) 095

Challenges & Opportunities

 More global approaches to capture experimental correlations, EFT at particle level and ML to boost sensitivities

- Transitioning to NLO where possible
- Joined effort by experimentalists and theorists to advance and squeeze out all information

- Associated single top and Z (tZq) production to probe for BSM effects
- Exploits Machine Learning

Modeling & Tuning

- Enormous amount of parameters to compare
- Modeling of ttbar system is the limiting uncertainty

MPI effects visible, CR not quite yet

Theory/Data

A. Jung

Top physics: Opportunities and Challenges

often limited by

ATLAS

√s = 13 TeV. 36.1 fb

Data

Total uncertainty

Common MC

Complex issue of different setups in ATLAS & CMS

- Facilitate future combinations, studies on systematic uncertainties, etc.
- Vital and critical for success of Run 3 (and beyond)
- Many details, please check:

[LHCtopWG: Common samples]

Towards common MC settings in ATLAS & CMS: ATL-PHYS-PUB-2021-016 & CMS NOTE-2021/005

A bright top quark future ahead

A. Jung

<u>Conclusions</u>

- Next year(s) will show what ~150 million tt events tell us
 Precision frontier of top guark physics
 - \rightarrow Run 3: Center of mass energy + more tops to come

Need all avenues to pin down BSM, challenges ahead:

- \rightarrow Theory uncertainties, Parton showers, common MC samples
- \rightarrow More global aproaches (kinematic distributions, EFT)
- \rightarrow Use vast top sample as b-physics lab

...even more distributions than shown so far...

The top quark

- Top is the heaviest fundamental particle discovered so far
 - $\rightarrow m_t = 173.34 \pm 0.76 \text{ GeV}$
- Unique quark:

- \rightarrow λ_t ~ 1 only m_t is natural mass Special role in EW symmetry breaking ?
- Production dominated by gg fusion: Decay channels: dilepto lepton+jets BR, bg g increase All hadronic g antiproto

Why top (and Higgs) ?

If we could calculate the Higgs mass:

 \rightarrow Large corrections to the Higgs mass from top quark "loops"

3.5

2.5

1.5

0.5

CMS

 $H \rightarrow \gamma \gamma$

 $\widehat{\mu}$ = 1.14^{+0.26} $\widehat{m}_{..}$ = 124.70 ± 0.34 GeV

Ge<

S/(S+B) weighted events /

Loops are dominated by top quarks

Natural Higgs mass close to Planck scale of 10¹⁹ GeV

Higgs mass at ~ 125 GeV!

- \rightarrow New physics in loops ?
- \rightarrow Many BSM extensions include a top quark partner
- \rightarrow No fine-tuning if top quark partner exists

19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV)

S/(S+B) weighted sum

S+B fits (weighted sum)

Data

The precision frontier

z wγ'zγ'wwwz'zz Th. $\Delta \sigma_{\mu}$ in exp. $\Delta \sigma$ EW,Zyy,Wyy: fiducial with W->lv, Z->ll, I=e,µ All results at: http://cern.ch/go/pNj7 A. Jung

Beyond the SM ?

Top physics: Opportunities and Challenges

Inclusive cross sections

The top p_ saga...continues

Spin Correlations

- Opening angle $\cos\varphi$ maximally sensitive to alignment of top quark spins
- Most precise direct measurement via cosφ -
 - Systematic: p₁ and BG modeling

A. Jung

Opening angle between leptons in top parent rest frame: = 0.97±0.05 f

• Indirect measurement via $\Delta \phi$ shows about 1σ discrepancy to NLO (CMS)

All distribution agree with the SM, no deviations observed

Spin Correlations

 Double-differential cross section allows to access spin correlation and polarization information in top quark events

Double diff. xsec Polarisation (0 in SM) Spin Correlation

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta^a_+ d \cos \theta^b_-} = \frac{1}{4} (1 + \frac{B^a_+}{B^a_+} \cos \theta^a_+ + \frac{B^b_-}{B^b_-} \cos \theta^b_- - C(a, b) \cos \theta^a_+ \cos \theta^b_-)$$

Charged lepton is perfect spin analyzer, well reconstructed
 Sensitive to BSM physics (more spin corr's = s-channel dark matter; less spin corr's = new scalars)

Rare top quark decays – Prospects

Flavor-changing neutral currents (FCNCs)

Extrapolations to HL-LHC: \rightarrow watch out for the bar:

<u>Caveats:</u> Some are "inclusive"...and also, we tend to do (much) better than projections, so we can hope to challenge more of the potential SM extensions

$t \rightarrow gu$	$t \rightarrow gc$	$t \rightarrow qZ$	$t \rightarrow \gamma u$	$t \rightarrow \gamma c$	$t \rightarrow Hq$
3.8×10^{-6}	3.2×10^{-5}	$2.4 - 5.8 \times 10^{-5}$	8.6×10^{-6}	7.4×10^{-5}	10^{-4}

CERN-LPCC-2018-03

Challenges in multi-D x-sec's

- "To fully correct the data or not" \rightarrow always do both!
- Parton level correction:

- More precise theoretical predictions ↔ larger extrapolation uncertainties
- Global fits, any comparison, combinations
- Particle level: more precise

Top physics: Opportunities and Challenges

SM vacuum stability

• A very fundamental question: What happens with the SM theory at highest physically allowed scales ? \rightarrow extrapolate to 10¹⁸ GeV

Spin Correlations

- 15 coefficients completely characterize spin dependence of top quark production, each probed by measuring a 1D differential distribution.
- Also measure opening angle of lepton in lab system
- Corrected to the parton level

Double diff. xsec Polarisation (0 in SM) Spin Correlation $\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta^a_+ d \cos \theta^b_-} = \frac{1}{4} (1 + B^a_+ \cos \theta^a_+ + B^b_- \cos \theta^b_- - C(a, b) \cos \theta^a_+ \cos \theta^b_-)$

Dilepton distribution probes top spin in 3 dimensions

- \rightarrow Leptons follow parent top spin (average polarisation given by 3-vectors B+/-)
- \rightarrow Relative lepton directions follow 3x3 matrix C of spin correlation coefficients

Top Quark Properties...

- ATLAS and CMS completed detailed studies of top quark's spin correlation, and polarization (CMS)
 - Initial deviations of > 3 SD seen by ATLAS, not confirmed by CMS (only ~ 1SD)

35.9 fb⁻¹ (13 TeV)

-- NLO, uncorrelated

---- NLO. SM

CMS

Ckkk

Cnn

-D

Alab

C_{rr}

- Data

Most precise variable cosφ

CMS

Unfolded data

POWHEGV2 + PYTHIA8

Stat + Syst--

0

-0.5

A. Jung

MG5 aMC@NLO + PYTHIA8 [FxFx]

dcosp

-10

g

0.7

0.6

0.5

1.05

0.95

-1

Theory Data 04

Stat

 $= 0.97 \pm 0.05$ (stat+syst)

0.5

COSO

The top p_ saga...

 Many Run I & Run II top pT measurements at ATLAS/CMS not described by NLO and most MCs – pQCD calculation do a better job

Data is more soft: consistently seen in all decay channels, also at 13 TeV

 \rightarrow The pT spectra in 8 TeV are described by pQCD NNLO calculations, but \rightarrow Indications of a slope wrt NNLO in 13 TeV data