

QCD CORRECTIONS FOR SM PROCESSES

SM – techniques, calculations & phenomenology WG

Alexander Huss

June 14th 2021

DISCLAIMER

- impossible to cover everything
- personal selection of recent results
- highlight some potentially interesting topics (more at: <u>https://phystev.cnrs.fr/wiki/2021:topics</u>)
- *QCD*, but dedicated talks:

Higgs, PDF & jets, substructure, MC, ...

SCATTERING REACTIONS @ LHC!

- Short distance "hard"
 - high scales: $10^2 10^3$ GeV

evolution towards a physical observable state

Long distance "soft"

• low scales: $\mathcal{O}(\text{few GeV})$

{Tools & MC}

SCATTERING REACTIONS @ LHC!

- Short distance "hard"
 - high scales: $10^2 10^3$ GeV

$$\sigma = \sigma_0 \times \left(1 + \alpha_{\rm s} + \alpha_{\rm s}^2 + \alpha_{\rm s}^3 + \dots\right)$$

fixed order: LO NLO NNLO N³LO ...

• Long distance "soft"

• low scales: $\mathcal{O}(\text{few GeV})$

THE MASTER FORMULA.

NLO — PUSHING THE LIMITS*

► 2 → 8 (6 coloured particles): $pp \rightarrow \mu^- \bar{\nu}_{\mu} e^+ \nu_e b \bar{b} b \bar{b}$ (off-shell tībb̄)

- large NLO corr. & impact on shape
- full v.s. on-shell: 5 10 %

* another frontier: NLO loop-induced {S. Jones}

NNLO — BOTTLE NECKS

TIMELINE FOR NNLO

Remarkable progress in the development of methods to perform NNLO computations!

[based on slide by M. Grazzini; QCD@LHC 2019]

- fiducial cross sections
- differential distributions
- reconstruction (jets, γ , ...)

 $\mathcal{F}_{obs}^{(n)}$

 massage expression to render intermediate objects finite (suitable for MC integration)

DIFFERENT METHODS*

- Antenna [Gehrmann–De Ridder, Gehrmann, Glover '05]
- ≻ CoLorFul

[Del Duca, Somogyi, Trocsanyi '05]

► qT-subtraction

[Catani, Grazzini '07; MATRIX]

- STRIPPER (sector-improved residues) [Czakon '10]
- nested soft-collinear

[Caola, Melnikov, Röntsch '17]

- N-jettiness [Gaunt, Stahlhofen, Tackmann, Walsh '15] [Boughezal, Focke, Liu, Petriello '15; MCFM]
- Projection-to-Born

[Cacciari, et al. '15]

Geometric, Local analytical Sectors
 [Herzog '18] [Magnea et al. '18]

* Subtraction & Slicing

V + jet PRODUCTION @ NNLO QCD WITH FLAVOUR

NNLO QCD now well-established with 2 independent calculations:

Antenna:	[Gehrmann-De Ridder, Gehrmann, Glover, AH, Morgan '15]
N-jettiness:	[Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello '15]
N-jettiness:	[Boughezal, Liu, Petriello '15]
Antenna:	[Gehrmann-De Ridder, Gehrmann, Glover, AH, Walker '17]
N-jettiness:	[Campbell, Ellis, Williams '16]
Antenna:	[Chen, Gehrmann, Glover, Höfer, AH '19]

... now comes in different flavours:

• Z+b-jet

[Gauld, Gehrmann-De Ridder, Glover, AH, Majer '20]

• W+c-jet

[Czakon, Mitov, Pellen, Poncelet '20]

identify flavour of a jet ("tag")
 →> test of perturbative QCD
 →> flavour structure of protons
 m_a ≡ 0 ⇔ IR unsafe with anti-k_T

FLAVOUR TAGGING & IR SAFETY

anti- k_T used in experiment \ll

m_b ≠ 0 (4FS): finite, but sensitive to ln(Q²/m_b²)
 m_b ≡ 0 (5FS): divergent

1. Collinear (NLO)

 $\begin{array}{c} g \leftrightarrow (b \parallel \bar{b}) \\ \underline{indistinguishable} \\ \hline b \\ \hline b \\ \hline b \\ \hline \end{array}$

→ assign tag using: $b \leftrightarrow + 1 \& \bar{b} \leftrightarrow - 1$ (alternatively reject even tags)

2. Soft (NNLO)

 $\longrightarrow \text{ modify the clustering: flavour-}k_T \quad \text{[Banfi, Salam, Zanderighi '06]} \\ d_{ij} = \frac{\Delta y_{ij}^2 + \Delta \phi_{ij}^2}{R^2} \begin{cases} \max(k_{ti}, k_{tj})^{\alpha} \min(k_{ti}, k_{tj})^{2-\alpha} & \text{softer of } i, j \text{ is flavoured,} \\ \min(k_{ti}, k_{tj})^{\alpha} & \text{softer of } i, j \text{ is unflavoured,} \end{cases}$

FLAVOUR TAGGING & IR SAFETY

anti- k_T used in experiment

• $m_b \neq 0$ (4FS): finite, but sensitive to $\ln(Q^2/m_b^2)$ • $m_b \equiv 0$ (5FS): divergent

1. Collinear (NLO)

issue for any fixed-order & jet algo!

→ assign tag using:
$$b \leftrightarrow + 1 \& \bar{b} \leftrightarrow - 1$$

(alternatively reject even tags)

2. Soft (NNLO)

 $\begin{array}{l} \text{mismatch to experiment!} \\ & \twoheadrightarrow \text{modify the clustering: flavour-}k_T \quad \text{[Banfi, Salam, Zanderighi '06]} \\ \\ & d_{ij} = \frac{\Delta y_{ij}^2 + \Delta \phi_{ij}^2}{R^2} \begin{cases} \max(k_{ti}, k_{tj})^\alpha \min(k_{ti}, k_{tj})^{2-\alpha} & \text{softer of } i, j \text{ is flavoured,} \\ \min(k_{ti}, k_{tj})^\alpha & \text{softer of } i, j \text{ is unflavoured,} \end{cases} \end{array}$

FLAVOUR TAGGING - TH V.S. EXP

➤ Unfolding ~10% sizeable for Z+b-jet (larger @ high-p_T)
 → mainly "background subtraction"

- flavour- k_T in experiment? At least resolve the collinear? How reliable P_T , MLO+PS?
- alternatives to flavour- k_T ? Can substructure techniques help (soft drop, ...)?

TOP QUARK PAIRS @ NNLO WITH THE MS MASS

[Catani, Devoto, Grazzini, Kallweit, Mazzitelli '20]

• relation between the pole mass and the \overline{MS} mass:

 $M_{\rm t} = m_{\rm t}(\mu_m) \, d_m(m_{\rm t}(\mu_m), \mu_m) = m_{\rm t}(\mu_m) \, \left(1 + \alpha_{\rm s} \, d^{(1)}(\mu_m) + \dots\right)$

• formal replacement $(M_t \to m_t(\mu_m))$ & expand $\Rightarrow \overline{\text{MS}}$ cross section: $\bar{\sigma}(\alpha_{\text{S}}(\mu_R), \mu_R, \mu_F; \mu_m, m_t(\mu_m); X) = \sigma(\alpha_{\text{S}}(\mu_R), \mu_R, \mu_F; M_t = m_t(\mu_m) d(m_t(\mu_m), \mu_m); X)$ *new scale* $\mu_m \to 15$ -point scale variation

- good perturbative behaviour
- difference between schemes reduce at higher orders

TOP QUARK PAIRS @ NNLO WITH THE MS MASS

[Catani, Devoto, Grazzini, Kallweit, Mazzitelli '20]

• relation between the pole mass and the \overline{MS} mass:

 $M_{\rm t} = m_{\rm t}(\mu_m) \, d_m(m_{\rm t}(\mu_m), \mu_m) = m_{\rm t}(\mu_m) \, \left(1 + \alpha_{\rm s} \, d^{(1)}(\mu_m) + \dots\right)$

• formal replacement $(M_t \to m_t(\mu_m))$ & expand $\Rightarrow \overline{\text{MS}}$ cross section: $\bar{\sigma}(\alpha_{\text{S}}(\mu_R), \mu_R, \mu_F; \mu_m, m_t(\mu_m); X) = \sigma(\alpha_{\text{S}}(\mu_R), \mu_R, \mu_F; M_t = m_t(\mu_m) d(m_t(\mu_m), \mu_m); X)$ *new scale* $\mu_m \to 15$ -point scale variation

caution: threshold region
→ large *K*-factor & uncertainties

TOP QUARK PAIRS @ NNLO WITH THE MS MASS

[Catani, Devoto, Grazzini, Kallweit, Mazzitelli '20]

• relation between the pole mass and the \overline{MS} mass:

 $M_{\rm t} = m_{\rm t}(\mu_m) \, d_m(m_{\rm t}(\mu_m), \mu_m) = m_{\rm t}(\mu_m) \, \left(1 + \alpha_{\rm s} \, d^{(1)}(\mu_m) + \dots\right)$

• formal replacement $(M_t \to m_t(\mu_m))$ & expand $\Rightarrow \overline{\text{MS}}$ cross section: $\bar{\sigma}(\alpha_{\text{S}}(\mu_R), \mu_R, \mu_F; \mu_m, m_t(\mu_m); X) = \sigma(\alpha_{\text{S}}(\mu_R), \mu_R, \mu_F; M_t = m_t(\mu_m) d(m_t(\mu_m), \mu_m); X)$ *new scale* $\mu_m \to 15$ -point scale variation

- caution: threshold region→ large *K*-factor & uncertainties
 - difference between MS
 & pole mass extraction?
 - running-mass effects found to be small

TOP QUARK SPIN CORRELATION AT NNLO

[Behring, Czakon, Mitov, Papanastasiou, Poncelet `19]

- leptons carry spin
 information of the tops
- fiducial: good agreement
- inclusive: some tension
- possible sources:
 - ✓ scale choice, m_t , PDF, finite width, EW corrections
 - ? extrapolation ---> need better
 understanding of modelling?
- full spin density matrix [Czakon, Mitov, Poncelet '20]

► First results with massless external states:

[Czakon, Mitov, Poncelet '21]

The $2 \rightarrow 3$ Frontier

First results with massless external states:

LH '17 wishlist $(N^2 LO_{QCD})$ $pp \rightarrow 3 \, \text{jets}$ **NLO**_{QCD}

* see also: [Chawdhry, Czakon, Mitov, Poncelet '19]

TWO-LOOP AMPLITUDES

- ► What we can do: $2 \rightarrow 1$, 2 (also masses), 3 (massless)
- ► 2 \rightarrow 3 amplitudes ready for phenomenology
 - $pp \rightarrow \gamma \gamma \gamma$; (LC) [Abreu, Page, Pascual, Sotnikov '20] [Chawdhry, Czakon, Mitov, Poncelet '20]
 - $pp \rightarrow \gamma \gamma j$: (LC) [Chawdhry, Czakon, Mitov, Poncelet '21] [Agarwal, Buccioni, von Manteuffel, Tancredi '21] (full) [Agarwal, Buccioni, von Manteuffel, Tancredi '21]
 - $pp \rightarrow jjj$; (LC) [Abreu, Febres Cordero, Ita, Page, Sotnikov '21]
- ► 5-point with one external mass
 - (planar)
 [Abreu, Ita, Moriello, Page, Tschernow, Zeng '20]
 [Papadopoulos, Tommasini, Wever '15]
 [Canko, Papadopoulos, Syrrakos '20]

NNLO SHORT SUMMARY

- ► fully differential NNLO: the new standard for $2 \rightarrow 2$ (towards $2 \rightarrow 3$)
- ► These calculations are ...
- ... very complex
 - ---> independent methods and/or implementation

 - ---> challenges for code releases: usability, quality assurance, ...

... CPU-cost intensive

- \rightsquigarrow prohibitive for e.g. PDF & α_{s} fits
- ** fast interpolation grids: APPLfast [APPLgrid, fastNLO, NNLOJET '19]

N³LO — INCLUSIVE

H [Anastasiou et al. '15] [Mistlberger '18], H(VBF) [Dreyer, Karlberg '16], HH(VBF) [Dreyer, Karlberg '18], DY [Duhr, Dulat, Mistlberger '20]

[Duhr, Dulat, Mistlberger '20]

$Q/{ m GeV}$	$\rm K_{QCD}^{N^{3}LO}$	$\delta(\text{scale})$	$\delta(\text{PDF}+\alpha_S)$	$\delta(\text{PDF-TH})$	$\frac{\sigma_{Z+\gamma^*}^{(0)}}{\sigma_{\gamma^*}^{(0)}}$
30	0.952	$^{+1.5\%}_{-2.5\%}$	$\pm 4.1\%$	$\pm 2.7\%$	1.01
50	0.966	$^{+1.1\%}_{-1.6\%}$	$\pm 3.2\%$	$\pm 2.5\%$	1.09
70	0.973	$^{+0.89\%}_{-1.1\%}$	$\pm 2.7\%$	$\pm 2.4\%$	2.16
90	0.978	$+0.75\%\ -0.89\%$	$\pm 2.5\%$	$\pm 2.4\%$	415
110	0.981	$^{+0.65\%}_{-0.73\%}$	$\pm 2.3\%$	$\pm 2.3\%$	7.4
130	0.983	$^{+0.57\%}_{-0.63\%}$	$\pm 2.2\%$	$\pm 2.2\%$	3.5
150	0.985	$^{+0.50\%}_{-0.54\%}$	$\pm 2.2\%$	$\pm 2.2\%$	2.6

• NNLO \rightarrow N³LO:

↔ outside & similar size band?!

- Missing N³LO **PDFs!**
- Do we need to worry about fitting h.o. corrections?

N³LO — GOING DIFFERENTIAL

N³LO — GOING DIFFERENTIAL

What is next?

- Drell-Yan !
- $pp \rightarrow \gamma \gamma$. **ingredients:** q_T subtraction $pp \rightarrow \gamma \gamma j$ @ NNLO $pp \rightarrow \gamma \gamma \gamma$ @ 3-loops [Caola, von Manteuffel, Tancredi '20]

► photon isolation in $\Delta R < 0.2$ $\hookrightarrow \sum p_{\mathrm{T},i} < 0.05 \cdot E_{\mathrm{T}}^{\gamma}$

 $\Delta R_{i\gamma} < 0.2$

 $\mathrm{d}Y$

• • ?

SCATTERING REACTIONS @ LHC!

- Short distance "hard"
 - high scales: $10^2 10^3$ GeV

$$\sigma = \sigma_0 \times \left(1 + \alpha_{\rm s} + \alpha_{\rm s}^2 + \alpha_{\rm s}^3 + \dots\right)$$

fixed order: LO NLO NNLO N³LO ...

large logs L!

Long distance "soft"

• low scales: $\mathcal{O}(\text{few GeV})$

 $\sigma = \sigma_0 \cdot \exp\left(\alpha_s^n L^{n+1} + \alpha_s^n L^n + \alpha_s^n L^{n-1} + \dots\right)$ resummation: LL NLL NNLL ...

[Becher, Neumann '20; Billis et al. '21; Carmada et al. '21; Re et al. '21]

> N3LL' = supplement N3LL with all constant terms of $\mathcal{O}(\alpha_s^3)$ w predict N3LO fiducial cross section [Billis, Dehnadi, Ebert, Michel, Tackmann '21]

[Camarda, Cieri, Ferrera '21]

N3LL'+NNLO improved description of data w.r.t N3LL+NNLO

linear power corrections \leftrightarrow recoil [Ebert, Tackmann '19]

($\pm 1-2\%$ after matching to NNLO)

reduced uncertainties few-% level across $p_{\rm T}^{\ell\ell}$

RESUMMATION & PARTON SHOWERS

Resummation

inclusive (analytic), tailored to specific observable with high logarithmic accuracy

• $q_{\mathrm{T}} \operatorname{N3LL}^{(\circ)}$

[Becher, Neumann '20; Billis et al. '21; Carmada et al. '21; Re et al. '21]

• NLL non-global logs [Banfi, Dreyer, Monni '21]

Parton Showers (PS)

exclusive (MC algorithm), general purpose + non-pertubative models

- Tools & MC}
- NNLO + PS: NNLOPS [Hamilton, et al. '12,...] UNNLOPS [Höche, Li, Prestel '14,...] / [Plätzer '12] Geneva [Alioli, Bauer, et al. '13,...]
 Minnlops [Monni, Nason, Re, Wiesemann, Zanderighi '19,...]

- What is the (logarithmic) accuracy of parton showers?
- Is it (N)LL? For what observable(s)?
- crucial to understand ---> design new PS

[Forshaw, Holguin, Plätzer '20] [Nagy, Soper '19] [...] [Dasgupta, et a. '20; Hamilton, et al. '20; Karlberg, et al. '21]

INVESTIGATING SHOWER ACCURACY*

► Compare PS to NLL observables: $\alpha_s \rightarrow 0$ for fixed $\alpha_s L$

- Is this observables set "complete"? How to extend it for pp?
- Can this test be adopted by other groups?

* see also: [Nagy, Soper, '20]

THEORY UNCERTAINTIES PT.

increasingly urgent to have more robust uncertainty estimates

 \rightsquigarrow e.g. for theory uncertainties in PDF fits

- * scale ambiguities in jets $(p_{T,j} v.s. \hat{H}_T)$
- scales in ratios:
 - top spin correlation (to expand or not @ NLO)
 - p_T(Z) / p_T(W) (correlate: very small residual uncertainties)
 - ang. coefficients A_i (un-correlate in the same process)
- nuisance parameters in p_T res.

• PDF \leftrightarrow model and priors

• treatment of correlations?

- Remarkable progress in precision calculations:
 - 2 \rightarrow 8 @ NLO, 2 \rightarrow 3 @ NNLO, 2 \rightarrow 1 @ N³LO
- ➤ still many issues & challenges ⇒ discussions sessions!
- More topics to consider: <u>https://phystev.cnrs.fr/wiki/2021:topics</u>
 - mixed QCD-EW corrections.
 - $p_T(Z)$ —in the world of per-cent precision
 - → m_b effects, QED ISR, NP effects, ...
 - wishlist: what is needed for HL-LC, 100 TeV, EIC?
 - ... your ideas!

ENJOY (VIRTUAL) LES HOUCHES!