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DISCLAIMER

• impossible to cover everything 

• personal selection of recent results 

• highlight some potentially interesting topics            
(more at: https://phystev.cnrs.fr/wiki/2021:topics) 

• QCD, but dedicated talks: 

Higgs, PDF & jets, substructure, MC, …

https://phystev.cnrs.fr/wiki/2021:topics


๏ Short distance    “hard” 

‣ high scales: —  

๏ Long distance    “soft” 
‣ low scales: 

102 103 GeV

𝒪(few GeV)

⇝
evolution towards a 
physical observable state

SCATTERING REACTIONS @ LHC!

{Tools & MC}



๏ Short distance    “hard” 

‣ high scales: —  

๏ Long distance    “soft” 
‣ low scales: 

102 103 GeV

𝒪(few GeV)

σ = σ0 × (1 + αs + α2
s + α3

s + …)
fixed order:   LO   NLO   NNLO   N3LO …

SCATTERING REACTIONS @ LHC!
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(perturbation theory) 
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non-perturbative effects 
(power suppressed) 

ultimately, limiting factor?

THE MASTER FORMULA.



NLO —- PUSHING THE LIMITS*

➤ 2 → 8 (6 coloured particles):    (off-shell )pp → μ−ν̄μe+νeb b̄ b b̄ tt̄bb̄
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Figure 3: Di�erential distributions at LO and NLO for pp æ µ
+

‹µe+
‹eb̄bb̄b: transverse

momentum of the two bottom quarks not originating from a top quark, and invariant mass of
the two bottom quarks not originating from a top quark.

originating from a top quark by maximising the likelihood function L, defined as a product of
two Breit–Wigner distributions corresponding to the top-quark and antitop-quark propagators,

Lij = 1
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22
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, (3.4)

where the momenta pabc are defined as pabc = pa + pb + pc. The combination of bottom quarks
{bi, bj} that maximises this function defines the two bottom quarks originating from top
quarks. From the 2 or 3 bottom quarks left in the event, the two hardest ones, i.e. those with
highest transverse momenta, define the bottom–antibottom pair that does not originate from
the top-quark decay and whose transverse-momentum and invariant-mass distributions are
shown in Figure 3. The distribution in the transverse momentum of the two bottom quarks
not coming from a top decay shows rather stable corrections around 100% apart from low
transverse momentum, where the QCD corrections reach 110%. The di�erence between the
full calculation and the one in DPA does not show significant variations over the phase space
neither at LO nor at NLO QCD but is largely inherited from the fiducial cross section. In
particular, the di�erence between the tt-DPA and the full calculation at NLO is within the
integration errors, as for all following distributions. The distribution in the invariant mass of
the bottom–antibottom pair, on the other hand, exhibits larger variations between the full
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Figure 5. Differential cross section distributions as a function of the transverse momentum of the 1st, 2nd,
3rd and the 4th hardest b-jet at LO and NLO for the pp ! e

+
⌫e µ

�
⌫̄µ bb̄ bb̄+X process at the LHC with

p
s = 13

TeV. The heavy-flavour jets are ordered in pT . The upper plots show absolute LO and NLO QCD predictions
together with corresponding uncertainty bands. The lower panels display the differential K-factor together with
the uncertainty band and the relative scale uncertainties of the LO cross section. Results are provided for
µR = µF = µ0 = HT /3. The LO and the NLO NNPDF3.1 PDF sets are employed.

between the b-jets, �R(bb). Also presented are the transverse momentum and invariant mass of the bb

system. They are labelled as pT (bb) and M(bb) respectively. Specifically, we display the two hardest
b-jets, denoted as b1b2, and the two softest b-jets, denoted as b3b4. Looking at �R(b1b2) we can
notice that the b1b2 system originates predominately from top-quark pair production as b1 and b2 are
generated mostly in back-to-back configurations. This is additionally confirmed by the pT (b1b2) and
M(b1b2) distributions, that have harder spectra in comparison to the b3b4 system. The latter system
is expected to receive large contributions from gluon splittings as manifested by the enhancement at
the beginning of the �R(b3b4) distribution. However, we can also notice rather large contributions
in the back-to-back configurations for �R(b3b4). This suggest that the simple picture that the two
high pT b-jets are from top-quark decays while the two low pT b-jets, which are closest in �R(bb), are
b-jets from the g ! bb̄ splitting may not apply. The reconstruction of the production mechanisms for
all final states is rather cumbersome when multiple b-jets are present. It requires good reconstruction
techniques and excellent understanding of the modelling of top-quark decays. The presence of the

– 15 –

[Denner, Lang, Pellen '20] [Bevilacqua, Bi, Hartanto, Kraus, Lupattellib, Worek '21]

๏ large NLO corr. & impact on shape  

๏ full v.s. on-shell:  5 - 10 %

* another frontier:  NLO loop-induced

mbb̄

pT(b1)

{S. Jones}



NNLO —- BOTTLE NECKS
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next-to-next-to-leading order (NNLO)

+(
“double virtual” “real-virtual”
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<latexit sha1_base64="O1G4yZvHnwkTsfZXDrr4HkYFNFU="></latexit>

+ )
“double real”

infrared singularities

two-loop amplitudes 
(new class of functions,  

combinatoric & 
algebraic complexity)

IR subtraction 
(involved IR structure,  

numerical stability,  
construction)

one-loop amplitudes 
(evaluation in singular 

& unstable regions)
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TIMELINE FOR NNLO

[based on slide by M. Grazzini; QCD@LHC 2019]

Z+b-jet
VH

nested soft-coll.

γγγ2jets

Z@𝒪(αsα)

WH

WH( )mb ≠ 0

2020 2021

WH+jet

γγ

+jetγγ

3jets

W+c-jet

γγγ Z@𝒪(αsα)

b̄b̄
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➤ Remarkable progress in the development of methods to perform NNLO computations! 
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DIFFERENT METHODS*

➤ Antenna [Gehrmann–De Ridder, Gehrmann, Glover ’05] 

➤ CoLorFul [Del Duca, Somogyi, Trocsanyi ’05]


➤ qT-subtraction [Catani, Grazzini ’07; MATRIX] 

➤ STRIPPER (sector-improved residues) 
[Czakon ‘10] 

‣ nested soft-collinear 
[Caola, Melnikov, Röntsch ’17]   

➤ N-jettiness [Gaunt, Stahlhofen, Tackmann, Walsh ’15]  

[Boughezal, Focke, Liu, Petriello ’15; MCFM]


➤ Projection-to-Born [Cacciari, et al. ’15]   

‣ Geometric,  Local analytical Sectors
[Herzog ’18] [Magnea et al. ‘18]

* Subtraction  &  Slicing

๏ in general: measurement function 
‣ fiducial cross sections 
‣ differential distributions 
‣ reconstruction (jets, , …) 

➡ massage expression to render 
intermediate objects finite          
(suitable for MC integration)

γ }ℱ(n)
obs



 PRODUCTION @ NNLO QCD WITH FLAVOURV + jet

๏ : 

๏ : 

๏ :

Z+jet

W+jet

γ+jet

‣ Antenna:  

‣ -jettiness:N{ [Gehrmann-De Ridder, Gehrmann, Glover, AH, Morgan ’15]

[Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello ’15]

‣ -jettiness: 

‣ Antenna: 

N{ [Boughezal, Liu, Petriello ’15]

[Gehrmann-De Ridder, Gehrmann, Glover, AH, Walker ’17]

‣ -jettiness: 

‣ Antenna: 

N{ [Campbell, Ellis, Williams ’16]

[Chen, Gehrmann, Glover, Höfer, AH ’19]

NNLO QCD now well-established with 2 independent calculations:

p

p

g

q
V

`1

¯̀
2

jet

๏ b-jet 

๏ c-jet

Z+

W+
[Gauld, Gehrmann-De Ridder, Glover, AH, Majer ’20]

10

๏ identify flavour of a jet (“tag”) 
 test of perturbative QCD 
 flavour structure of protons   

๏     IR unsafe with anti-  

⇝
⇝
mq ≡ 0 ⇔ kT

[Czakon, Mitov, Pellen, Poncelet ’20]

… now comes in different flavours:



FLAVOUR TAGGING & IR SAFETY

1. Collinear  (NLO) 

2. Soft  (NNLO)

11

anti-   used in experiment kT
‣  (4FS):  finite, but sensitive to  

‣  (5FS):  divergent 

mb ≠ 0 ln(Q2/m2
b)

mb ≡ 0

Rhorry Gauld, 01/06/2021  19

What happens if we apply anti-kT alg. as in an experimental set-up

Collinear safety

C ∝ αs ln[Q2/m2
b]

S ∝ α2
s ln2[Q2/m2

b]

Massless(5fs): infinite  
Massive(4fs): finite, but contains large corrections like

γ/Z → ll̄

q̄

q

b̄

b

g

γ/Z → ll̄q

q
Soft safety

InfraRed and Collinear safety

pl pl̄

k1

k2
k3
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Massless(5fs): infinite  
Massive(4fs): finite, but contains large corrections like

γ/Z → ll̄

q̄

q

b̄

b

g

γ/Z → ll̄q

q
Soft safety

InfraRed and Collinear safety

pl pl̄

k1

k2
k3 ⏟
⏟ assign tag using:    &         

     (alternatively reject even tags)
⇝ b ↔ + 1 b̄ ↔ − 1

 modify the clustering:  flavour-  
    
⇝ kT [Banfi, Salam, Zanderighi ’06]

 singularity 
not protected by 

 

Eg → 0

Eg ≥ 2mq

2.2 Flavoured-jet algorithm

Throughout this work jets are reconstructed with the flavour-kt algorithm, which provides

an infrared-safe definition of jet flavour. The main di↵erence with respect to a native

jet algorithm is that the clustering of particles relies on both momentum and flavour

information of the input pseudo-jets. For completeness, we summarise the main steps of the

algorithm for hadron–hadron collisions originally presented in ref. [25] (also summarised in

ref. [41]).

The algorithm proceeds by assigning a net flavour to all pseudo-jets or jets based on

their quark flavour content, attributing +1 (�1) if a quark (antiquark) of the flavour under

consideration is present. In an experimental context, the presence of a quark flavour could

be inferred from a fully/partially reconstructed hadron. A criterion is then applied to these

objects to determine if they carry flavour, possible examples being: the net flavour (sum

of quarks and antiquarks); or the net flavour modulo two. Objects are considered to carry

flavour if they carry non-zero values of this criterion. The algorithm then proceeds by

constructing distance measures for pairs of all final-state pseudo-jets i and j (dij) as well

as beam distances (diB and diB̄). These (flavour-dependent) distances are defined as

dij =
�y

2
ij +��

2
ij

R2

8
<

:
max(kti, ktj)↵min(kti, ktj)2�↵ softer of i, j is flavoured,

min(kti, ktj)↵ softer of i, j is unflavoured,
(2.4)

and

d
iB̄

=

8
<

:
max(kti, ktB̄(yi))

↵min(kti, ktB̄(yi))
2�↵ softer of i, j is flavoured,

min(kti, ktB̄(yi))
↵ softer of i, j is unflavoured.

(2.5)

In these definitions, kti and ktj are the transverse momentum of the pseudo-jets i and j, and

the rapidity di↵erence and azimuthal angular separation between these pseudo-jets is given

by �yij and ��ij , respectively. The parameters R and ↵ define a class of measures for

the algorithm. The (rapidity-dependent) transverse momentum of the beam B at positive

rapidity ktB, and beam B̄ at negative rapidity ktB̄, are defined as:

ktB(y) =
X

i

kti
�
⇥(yi � y) +⇥(y � yi) e

yi�y
�
, (2.6)

ktB̄(y) =
X

i

kti
�
⇥(y � yi) +⇥(yi � y) ey�yi

�
, (2.7)

with ⇥(0) = 1/2 and the index i going over all pseudo-jets.

While this flavour-aware jet algorithm is substantially more complex than the flavour-

blind anti-kt algorithm [42], its use is unavoidable in fixed-order computations based on

– 7 –

      
indistinguishable

g ↔ (b ∥ b̄)



FLAVOUR TAGGING & IR SAFETY

1. Collinear  (NLO) 

2. Soft  (NNLO)
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     (alternatively reject even tags)
⇝ b ↔ + 1 b̄ ↔ − 1

 modify the clustering:  flavour-  
    
⇝ kT [Banfi, Salam, Zanderighi ’06]

 singularity 
not protected by 

 

Eg → 0

Eg ≥ 2mq

2.2 Flavoured-jet algorithm

Throughout this work jets are reconstructed with the flavour-kt algorithm, which provides

an infrared-safe definition of jet flavour. The main di↵erence with respect to a native

jet algorithm is that the clustering of particles relies on both momentum and flavour

information of the input pseudo-jets. For completeness, we summarise the main steps of the

algorithm for hadron–hadron collisions originally presented in ref. [25] (also summarised in

ref. [41]).

The algorithm proceeds by assigning a net flavour to all pseudo-jets or jets based on

their quark flavour content, attributing +1 (�1) if a quark (antiquark) of the flavour under

consideration is present. In an experimental context, the presence of a quark flavour could

be inferred from a fully/partially reconstructed hadron. A criterion is then applied to these

objects to determine if they carry flavour, possible examples being: the net flavour (sum

of quarks and antiquarks); or the net flavour modulo two. Objects are considered to carry

flavour if they carry non-zero values of this criterion. The algorithm then proceeds by

constructing distance measures for pairs of all final-state pseudo-jets i and j (dij) as well

as beam distances (diB and diB̄). These (flavour-dependent) distances are defined as

dij =
�y

2
ij +��

2
ij

R2

8
<

:
max(kti, ktj)↵min(kti, ktj)2�↵ softer of i, j is flavoured,

min(kti, ktj)↵ softer of i, j is unflavoured,
(2.4)

and

d
iB̄

=

8
<

:
max(kti, ktB̄(yi))

↵min(kti, ktB̄(yi))
2�↵ softer of i, j is flavoured,

min(kti, ktB̄(yi))
↵ softer of i, j is unflavoured.

(2.5)

In these definitions, kti and ktj are the transverse momentum of the pseudo-jets i and j, and

the rapidity di↵erence and azimuthal angular separation between these pseudo-jets is given

by �yij and ��ij , respectively. The parameters R and ↵ define a class of measures for

the algorithm. The (rapidity-dependent) transverse momentum of the beam B at positive

rapidity ktB, and beam B̄ at negative rapidity ktB̄, are defined as:

ktB(y) =
X

i

kti
�
⇥(yi � y) +⇥(y � yi) e

yi�y
�
, (2.6)

ktB̄(y) =
X

i

kti
�
⇥(y � yi) +⇥(yi � y) ey�yi

�
, (2.7)

with ⇥(0) = 1/2 and the index i going over all pseudo-jets.

While this flavour-aware jet algorithm is substantially more complex than the flavour-

blind anti-kt algorithm [42], its use is unavoidable in fixed-order computations based on

– 7 –

mismatch to experiment!

issue for any fixed-order & jet algo!      
indistinguishable

g ↔ (b ∥ b̄)
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Questions/comments and discussion encouraged!
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Unfolding correction ~10% for Z+b-jet (grows for large  )pT,b
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jet

๏ flavour-  in experiment?  At least resolve the collinear?  How reliable is NLO+PS? 

๏ alternatives to flavour- ?  Can substructure techniques help (soft drop, …)?

kT

kT

➤ Unfolding ~10% sizeable for Z+b-jet (larger @ high- ) 
 mainly “background subtraction”

pT

⇝

|ηb | pT,b

“Collinear”
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[Catani, Devoto, Grazzini, Kallweit, Mazzitelli ’20]

๏ relation between the pole mass and the  mass: 

       

๏ formal replacement ( ) & expand     cross section:

MS

Mt = mt(μm) dm(mt(μm), μm) = mt(μm) (1 + αs d(1)(μm) + …)
Mt → mt(μm) ⇒ MS

new scale μm  15-point scale variation⇝

pole MS
|ytt̄ |

‣ good perturbative behaviour 

‣ difference between schemes 
reduce at higher orders 
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[Catani, Devoto, Grazzini, Kallweit, Mazzitelli ’20]

๏ relation between the pole mass and the  mass: 

       

๏ formal replacement ( ) & expand     cross section:

MS

Mt = mt(μm) dm(mt(μm), μm) = mt(μm) (1 + αs d(1)(μm) + …)
Mt → mt(μm) ⇒ MS

new scale μm  15-point scale variation⇝

pole MS

mtt̄
‣ caution:  threshold region      

 large -factor & uncertainties ⇝ K
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[Catani, Devoto, Grazzini, Kallweit, Mazzitelli ’20]

๏ relation between the pole mass and the  mass: 

       

๏ formal replacement ( ) & expand     cross section:

MS

Mt = mt(μm) dm(mt(μm), μm) = mt(μm) (1 + αs d(1)(μm) + …)
Mt → mt(μm) ⇒ MS

new scale μm  15-point scale variation⇝

pole MS

mtt̄
‣ caution:  threshold region      

 large -factor & uncertainties ⇝ K

๏ difference between  
& pole mass extraction? 

๏ running-mass effects 
found to be small

MS



TOP QUARK SPIN CORRELATION AT NNLO

๏ leptons carry spin 
information of the tops 

๏ fiducial: good agreement 

๏ inclusive: some tension 

๏ possible sources: 
✓ scale choice,   ,  PDF,                    

finite width,  EW corrections  

? extrapolation    need better 
understanding of modelling? 

๏ full spin density matrix

mt

⇝

3
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FIG. 1: NNLO QCD predictions for the fiducial (top) and
inclusive selections (bottom) of the normalized ��`` distri-
bution versus ATLAS data [20]. Uncertainty bands are from
7-point scale variation.

III. RESULTS

In this work we calculate two di↵erential distributions,
namely, the two leptons’ angular di↵erence in the trans-
verse plane ��`` and their rapidity di↵erence |�⌘``|.

We have two selection criteria for each distribution.
The first one, called inclusive, does not assume any se-
lection cuts. The second one, called fiducial, is based on
the ATLAS selection cuts [20]: an electron and a muon
of opposite electric charge with pT > 27(25) GeV for the
harder (softer) lepton and |⌘| < 2.5. In addition, we re-
quire at least two jets (at least one of which is a b-flavored
jet) with pT > 25 GeV and |⌘| < 2.5. All jets are defined
with the anti-kT algorithm [64] with R = 0.4.

The normalized fiducial and inclusive ��`` and |�⌘``|
distributions are shown in fig. 1 and fig. 3, respectively.
Each curve is normalized with respect to the correspond-
ing visible cross-section, i.e. the integral under it equals
unity. The ��`` distribution is compared with the pub-
lished ATLAS data [20]; the |�⌘``| one is not since the
corresponding data has not been published yet.

A number of observations can be made from fig. 1.
The most interesting feature is the di↵erent behavior of
the NNLO/NLO ��`` K-factor between the fiducial and
inclusive cases. With respect to the inclusive case, in
the fiducial case the K-factor is much larger, the NNLO
distribution is in good agreement with data and the scale
uncertainty is much larger. Notably, the NNLO inclusive
prediction does not agree well with data.

Since both the fiducial and inclusive data originate

from the same measurement it is not a priori clear why
the NNLO calculation would agree with only one of them.
In our view the most plausible explanation for this dis-
crepancy lies in the extrapolation of the fiducial measure-
ment to the full phase space.

Such a conclusion should not come as a complete sur-
prise since the extrapolation to full phase space is per-
formed with event generators that have accuracy di↵erent
than the one in the present work. In fact an early indica-
tion about the importance of higher order corrections in
top quark production came from the long standing top
quark pT discrepancy, namely, that NLO-accurate event
generators do not model well the LHC top quark pT dis-
tribution while the NNLO QCD correction significantly
improves the agreement with data.

A. Anatomy of higher order corrections to ��``

In the following we o↵er a detailed analysis quantifying
a number of possible contributions to this observable. We
show that they are too small to a↵ect the behavior of this
observable in the SM.
Is the NNLO correction large? NLO analyses [20] in-

dicate that higher order e↵ects are likely not going to
bridge the 3.2� discrepancy with the ATLAS ��`` data.
Yet we see that the NNLO QCD prediction agrees well
with data in the fiducial region. From this one cannot
directly conclude that the NNLO correction is unusually
large. The reason is that our NNLO prediction uses scales
di↵erent than the ones in most event generators.

For our preferred choice of scales we find that the fidu-
cial NNLO/NLO K-factor is no larger than 5%. This
is perfectly reasonable NNLO correction which, more-
over, is consistent with the NLO scale uncertainty band.
The NLO/LO K-factor is larger by a factor of about 3.
In the inclusive case one observes smaller K-factors and
less scale variation which is reasonable to expect since
the observable is more inclusive. We note that in both
cases the smallness of the LO uncertainty band is due to a
cancellation between the normalization factor and is not
representative of the true uncertainty in the di↵erential
distribution.

We conclude that the behavior of ��`` is consistent
with good perturbative convergence. The NNLO cor-
rection plays an important role: in the fiducial case it
reduces the scale uncertainty by more than a factor of
two and modifies the slope of the theory prediction in a
direction that improves the agreement with data.
Choice of scales. All calculations in this work are per-

formed with three scales: the one in eq. (3) as well as
µF,R = mt and µF,R = mt/2. As can be seen in fig. 2
the result with scale mt/2 behaves similarly to the one
in eq. (3) and is even closer to data. On the other hand,
the calculation with scale mt has larger NNLO/NLO K-
factor and the agreement with data in the fiducial case
is not as good as for the other two scales.

To understand this behavior we recall that the scale

[Behring, Czakon, Mitov, Papanastasiou, Poncelet `19] NLO NNLO ATLAS
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[Czakon, Mitov, Poncelet ’20]

Δφ(ℓ+, ℓ−)
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1
σ

dσ
dX

expanded ATLAS

16

[Czakon, Mitov, Poncelet ’20]

๏ choice in expanding the ratio: 

๏ fake “agreement” at NLO 

‣ difference    NLO uncertainty! 

๏ both agree @ NNLO 
‣ predictions robust 

‣ tension persists in “inclusive” 

∼

   R ≡
1
σ

dσ
dX

= R(0) + αsR(1) + α2
s R(2)… NLO

NNLO

(formally equivalent)
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Figure 6: Same as Figure 5, but for the transverse momentum spectrum of each photon.

at LO since these two photons need to recoil against the hardest photon �1. As a consequence,
the LO cross section vanishes for ���1,�2 < 2⇡/3 and ���2,�3 > 2⇡/3, respectively. Those phase
space regions are filled only upon inclusion of real QCD radiation through higher-order corrections,
which is required to overcome the kinematic constraints at LO. Accordingly, the NLO (NNLO)
predictions in these regimes are e↵ectively only LO (NLO) accurate, which is reflected by the
increased size of both corrections and uncertainty bands. We find that back-to-back configurations
of �1 and �2 are still preferred at higher orders, whereas the distribution of the azimuthal separation
between �2 and �3 becomes much more uniform when adding higher-order corrections.

In the central plots of Figure 8 we show the invariant-mass and transverse-momentum distributions
of the three-photon system. The invariant-mass distribution peaks around 100GeV. Below the
peak the distribution falls o↵ steeply with a lower bound imposed by the phase space selection cut
m��� � 50 GeV. In that low m��� region radiative corrections increase quite strongly. By contrast,
higher-order corrections become successively smaller in the tail of the m��� distribution, which
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THE  FRONTIER2 → 3

2

we approximate the finite two-loop contribution

R
(2)(µ2

R) = 2 Re
h
M

†(0)
F

(2)

i
(µ2

R) +
��F (1)

��2(µ2

R)

⌘ R
(2)(s12) +

4X

i=1

ci ln
i

✓
µ
2

R

s12

◆
, (1)

in the following way

R
(2)(s12) ⇡ R

(2)l.c.(s12) , (2)

where R
(2)l.c.(s12) denotes its leading-colour approxima-

tion. It is taken from the C++ implementation provided
in ref. [27].

Eq. (2) above is the only approximation made in the
present computation. We have checked that the overall
contribution of R

(2)l.c.(s12) is about O(2%) and we ex-
pect the missing pure virtual contributions beyond the
leading-colour approximations to be further suppressed.

We consider production of two and three jets at the
LHC with a center of mass energy of 13 TeV with jet re-
quirements adapted from experimental phase space defi-
nitions like, for example, ref. [6]. Jets are clustered using
the anti-kT algorithm [36] with a radius of R = 0.4 and
required to have transverse momentum pT (j) of at least
60 GeV and rapidity y(j) fulfilling |y(j)| < 4.4. All jets
passing this requirement are sorted and labeled according
to their pT from largest to smallest. Among those jets we
require the two leading jets to fulfill pT (j1)+pT (j2) > 250
GeV in order to avoid large higher-order corrections in
two-jet production close to the phase space boundary.
We denote by d� the di↵erential cross section for at least
n jets fulfilling the above criteria. Its expansion in ↵S

reads

d�n = d�
(0)

n + d�
(1)

n + d�
(2)

n + O
�
↵
n+3

S

�

d�
LO

n = d�
(0)

n ,

d�
NLO

n = d�
(0)

n + d�
(1)

n ,

d�
NNLO

n = d�
(0)

n + d�
(1)

n + d�
(2)

n . (3)

We quantify the size of (N)NLO corrections with the
help of the following ratios of di↵erential cross sections

K
NNLO =

d�
NNLO

d�NLO
and K

NLO =
d�

NLO

d�LO
. (4)

The pdf set NNPDF31 nnlo as 0118 is used for all per-
turbative orders. The renormalization µR and factoriza-
tion µF scales are set equal µR = µF = µ0. The central
scale µ0 is chosen as ĤT /n for n = 1, 2, where

ĤT =
X

i2partons

pT,i . (5)

The sum in the above equation is over all final state par-
tons, irrespective of the jet requirements. Previous stud-
ies of perturbative convergence in jet production support
this event-based dynamic scale [37, 38]. Unless stated
otherwise, uncertainties from missing higher orders in
perturbation theory are estimated by independent vari-
ation of µF and µR by a factor of 2 around the central
scale µ0, subject to the constraint 1/2  µR/µF  2.

0.8

0.9

1.0

1.1

1.2

3-jet, Scale: µ0 = ĤT , LHC 13 TeVi = 1
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FIG. 1: The three panels show the ith leading jet transverse
momentum pT (ji) for i = 1, 2, 3 for the production of (at
least) three jets. LO (green), NLO (blue) and NNLO (red) are
shown for the central scale (solid line). 7-point scale variation
is shown as a coloured band. The grey band corresponds to
the uncertainty from Monte Carlo integration.

III. RESULTS

We begin by discussing typical jet observables at
hadron colliders. In fig. 1 we show di↵erential cross sec-
tions for three-jet production with respect to the trans-
verse momentum pT (ji) of the ith leading jet. In all his-
tograms the outer bins do not include over- or under-flow
events.

The NNLO K-factor of the pT (j1) distribution is not
flat: at small pT (j1) one observes negative NNLO correc-
tions of about �10%, while at large pT (j1) the corrections
tend to be small and positive. The change in scale depen-
dence for this observable when going from NLO to NNLO
is also dependent on pT (j1). One observes a rather signif-
icant reduction at large pT (j1) (from about 7% at NLO to
about 2% at NNLO) while at small pT (j1), where the K-
factor is largest, the scale dependence slightly increases
(from about 4% at NLO to about 5% at NNLO). In-
terestingly, the scale dependence at NLO and NNLO be-
haves rather di↵erently: at NLO it steadily increases with
pT (j1) while at NNLO it decreases with pT (j1). Through-
out this work we define the scale dependence as one half
of the width of the scale uncertainty band. This is rel-
evant for cases where the scale variation is asymmetric,
as for example is the case of pT (j1) at NLO.

The pT (j2) distribution has a similar pattern of NNLO
corrections: relative to NLO they are negative, about

➤ First results with massless external states:

[Kallweit, Sotnikov, Wiesemann '21]

[Czakon, Mitov, Poncelet '21]

process known desired

pp æ 2 jets
N2LOQCD

NLOQCD+NLOEW

pp æ 3 jets NLOQCD N2LOQCD

Table I.2: Precision wish list: jet final states.

3 jets: A rapidly increasing number of results on 5-point two-loop amplitudes can be found in [105,
123,124,289–293].

1.6 Vector boson associated processes
The numerous decay channels for vector bosons and the possible inclusion of full o�-shell correc-
tions versus factorised decays in the narrow width approximation make vector boson processes
complicated to classify. A full range of decays in the narrow width approximation would be a de-
sirable minimum precision. In the meanwhile, for leptonic decays this goal is met for essentially
all processes in the list. In terms of QCD corrections, full o�-shell decays don’t mean a signifi-
cant complication of the respective QCD calculations and are available almost everywhere. This
is no longer true for EW corrections, where leptonic decays increase the complexity of the calcu-
lation, and are thus not availalbe for many high-multiplicity processes (involving more than four
final-state particles) yet. Hadronic decays are even harder to classify because they are formally
part of subleading Born contributions to processes involving jets and possibly further leptoni-
cally decaing vector bosons. Including higher-order corrections in a consisistent way here will
usually require full SM corrections to the complete tower of Born processes, as briefly discussed
in Sec. 1.3. An overview of the status of vector boson associated processes is given in Table I.3,
where leptonic decays are understood if not stated otherwise. Also “ induced processes become
increasingly important in cases where EW corrections are highly relevant. While often included
only at their leading order, first computations involving also full EW corrections to “-induced
channels were recently achieved.

V : Inclusive cross-sections and rapidity distributions in the threshold limit have been
extracted from the pp æ V results [294, 295]. Parton shower matched N2LOQCD
computations using both the MiNLO method [296], SCET resummation [196] and
via the UN2LOPS technique [219]. Completing the inclusive N3LOQCD computa-
tion beyond the threshold limit is an important step for phenomenological studies.
The dominant factorisable corrections at O(–s–) (N(1,1)LOQCD¢EW) are also now
available [297].
The inclusive production cross section for W and Z bosons has been measured
at the LHC using the leptonic decays of the vector bosons. The precision in those
measurements already reached the barrier of the luminosity uncertainty ≥ 2%, which
is not easy to further improve. For example, the most precise measurement of the
W and Z bosons integrated fiducial cross sections is for the

Ô
s = 7 TeV sample

having �‡W /‡W = 1.87% and �‡Z/‡Z = 1.82% uncertainty, with the luminosity
uncertainty (≥ 1.8%) accounting for most of it [298].
While the inclusive integrated cross sections have been already measured and com-
pared fairly well with the present theoretical predictions, this is not the case for
di�erential distributions. A key observable, both for precision studies as well as for
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LH ’17 wishlist

pp → γγγ pp → 3 jets
[Chawdhry, Czakon, Mitov, Poncelet '19]* see also:
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Figure 6: Same as Figure 5, but for the transverse momentum spectrum of each photon.

at LO since these two photons need to recoil against the hardest photon �1. As a consequence,
the LO cross section vanishes for ���1,�2 < 2⇡/3 and ���2,�3 > 2⇡/3, respectively. Those phase
space regions are filled only upon inclusion of real QCD radiation through higher-order corrections,
which is required to overcome the kinematic constraints at LO. Accordingly, the NLO (NNLO)
predictions in these regimes are e↵ectively only LO (NLO) accurate, which is reflected by the
increased size of both corrections and uncertainty bands. We find that back-to-back configurations
of �1 and �2 are still preferred at higher orders, whereas the distribution of the azimuthal separation
between �2 and �3 becomes much more uniform when adding higher-order corrections.

In the central plots of Figure 8 we show the invariant-mass and transverse-momentum distributions
of the three-photon system. The invariant-mass distribution peaks around 100GeV. Below the
peak the distribution falls o↵ steeply with a lower bound imposed by the phase space selection cut
m��� � 50 GeV. In that low m��� region radiative corrections increase quite strongly. By contrast,
higher-order corrections become successively smaller in the tail of the m��� distribution, which

11

THE  FRONTIER2 → 3

2

we approximate the finite two-loop contribution

R
(2)(µ2

R) = 2 Re
h
M

†(0)
F

(2)

i
(µ2

R) +
��F (1)

��2(µ2

R)

⌘ R
(2)(s12) +

4X

i=1

ci ln
i

✓
µ
2

R

s12

◆
, (1)

in the following way

R
(2)(s12) ⇡ R

(2)l.c.(s12) , (2)

where R
(2)l.c.(s12) denotes its leading-colour approxima-

tion. It is taken from the C++ implementation provided
in ref. [27].

Eq. (2) above is the only approximation made in the
present computation. We have checked that the overall
contribution of R

(2)l.c.(s12) is about O(2%) and we ex-
pect the missing pure virtual contributions beyond the
leading-colour approximations to be further suppressed.

We consider production of two and three jets at the
LHC with a center of mass energy of 13 TeV with jet re-
quirements adapted from experimental phase space defi-
nitions like, for example, ref. [6]. Jets are clustered using
the anti-kT algorithm [36] with a radius of R = 0.4 and
required to have transverse momentum pT (j) of at least
60 GeV and rapidity y(j) fulfilling |y(j)| < 4.4. All jets
passing this requirement are sorted and labeled according
to their pT from largest to smallest. Among those jets we
require the two leading jets to fulfill pT (j1)+pT (j2) > 250
GeV in order to avoid large higher-order corrections in
two-jet production close to the phase space boundary.
We denote by d� the di↵erential cross section for at least
n jets fulfilling the above criteria. Its expansion in ↵S

reads
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We quantify the size of (N)NLO corrections with the
help of the following ratios of di↵erential cross sections
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The pdf set NNPDF31 nnlo as 0118 is used for all per-
turbative orders. The renormalization µR and factoriza-
tion µF scales are set equal µR = µF = µ0. The central
scale µ0 is chosen as ĤT /n for n = 1, 2, where

ĤT =
X

i2partons

pT,i . (5)

The sum in the above equation is over all final state par-
tons, irrespective of the jet requirements. Previous stud-
ies of perturbative convergence in jet production support
this event-based dynamic scale [37, 38]. Unless stated
otherwise, uncertainties from missing higher orders in
perturbation theory are estimated by independent vari-
ation of µF and µR by a factor of 2 around the central
scale µ0, subject to the constraint 1/2  µR/µF  2.
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FIG. 1: The three panels show the ith leading jet transverse
momentum pT (ji) for i = 1, 2, 3 for the production of (at
least) three jets. LO (green), NLO (blue) and NNLO (red) are
shown for the central scale (solid line). 7-point scale variation
is shown as a coloured band. The grey band corresponds to
the uncertainty from Monte Carlo integration.

III. RESULTS

We begin by discussing typical jet observables at
hadron colliders. In fig. 1 we show di↵erential cross sec-
tions for three-jet production with respect to the trans-
verse momentum pT (ji) of the ith leading jet. In all his-
tograms the outer bins do not include over- or under-flow
events.

The NNLO K-factor of the pT (j1) distribution is not
flat: at small pT (j1) one observes negative NNLO correc-
tions of about �10%, while at large pT (j1) the corrections
tend to be small and positive. The change in scale depen-
dence for this observable when going from NLO to NNLO
is also dependent on pT (j1). One observes a rather signif-
icant reduction at large pT (j1) (from about 7% at NLO to
about 2% at NNLO) while at small pT (j1), where the K-
factor is largest, the scale dependence slightly increases
(from about 4% at NLO to about 5% at NNLO). In-
terestingly, the scale dependence at NLO and NNLO be-
haves rather di↵erently: at NLO it steadily increases with
pT (j1) while at NNLO it decreases with pT (j1). Through-
out this work we define the scale dependence as one half
of the width of the scale uncertainty band. This is rel-
evant for cases where the scale variation is asymmetric,
as for example is the case of pT (j1) at NLO.

The pT (j2) distribution has a similar pattern of NNLO
corrections: relative to NLO they are negative, about

➤ First results with massless external states:

[Kallweit, Sotnikov, Wiesemann '21]

[Czakon, Mitov, Poncelet '21]

process known desired

pp æ 2 jets
N2LOQCD

NLOQCD+NLOEW

pp æ 3 jets NLOQCD N2LOQCD

Table I.2: Precision wish list: jet final states.

3 jets: A rapidly increasing number of results on 5-point two-loop amplitudes can be found in [105,
123,124,289–293].

1.6 Vector boson associated processes
The numerous decay channels for vector bosons and the possible inclusion of full o�-shell correc-
tions versus factorised decays in the narrow width approximation make vector boson processes
complicated to classify. A full range of decays in the narrow width approximation would be a de-
sirable minimum precision. In the meanwhile, for leptonic decays this goal is met for essentially
all processes in the list. In terms of QCD corrections, full o�-shell decays don’t mean a signifi-
cant complication of the respective QCD calculations and are available almost everywhere. This
is no longer true for EW corrections, where leptonic decays increase the complexity of the calcu-
lation, and are thus not availalbe for many high-multiplicity processes (involving more than four
final-state particles) yet. Hadronic decays are even harder to classify because they are formally
part of subleading Born contributions to processes involving jets and possibly further leptoni-
cally decaing vector bosons. Including higher-order corrections in a consisistent way here will
usually require full SM corrections to the complete tower of Born processes, as briefly discussed
in Sec. 1.3. An overview of the status of vector boson associated processes is given in Table I.3,
where leptonic decays are understood if not stated otherwise. Also “ induced processes become
increasingly important in cases where EW corrections are highly relevant. While often included
only at their leading order, first computations involving also full EW corrections to “-induced
channels were recently achieved.

V : Inclusive cross-sections and rapidity distributions in the threshold limit have been
extracted from the pp æ V results [294, 295]. Parton shower matched N2LOQCD
computations using both the MiNLO method [296], SCET resummation [196] and
via the UN2LOPS technique [219]. Completing the inclusive N3LOQCD computa-
tion beyond the threshold limit is an important step for phenomenological studies.
The dominant factorisable corrections at O(–s–) (N(1,1)LOQCD¢EW) are also now
available [297].
The inclusive production cross section for W and Z bosons has been measured
at the LHC using the leptonic decays of the vector bosons. The precision in those
measurements already reached the barrier of the luminosity uncertainty ≥ 2%, which
is not easy to further improve. For example, the most precise measurement of the
W and Z bosons integrated fiducial cross sections is for the

Ô
s = 7 TeV sample

having �‡W /‡W = 1.87% and �‡Z/‡Z = 1.82% uncertainty, with the luminosity
uncertainty (≥ 1.8%) accounting for most of it [298].
While the inclusive integrated cross sections have been already measured and com-
pared fairly well with the present theoretical predictions, this is not the case for
di�erential distributions. A key observable, both for precision studies as well as for
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LH ’17 wishlist

pp → γγγ pp → 3 jets
[Chawdhry, Czakon, Mitov, Poncelet '19]* see also:

phenomenology 
๏  and ; how well? 
๏ constraints on PDFs? 
๏ correlation with 1-, 2-jet? 
๏ … 

R3/2 αs

{J. Huston}



TWO-LOOP AMPLITUDES

➤ What we can do:  2 → 1,    2 (also masses),    3 (massless) 

➤  amplitudes ready for phenomenology 

• : (LC) [Chawdhry, Czakon, Mitov, Poncelet '20]  

• : (LC) [Agarwal, Buccioni, von Manteuffel, Tancredi ’21]  (full) [Agarwal, Buccioni, von Manteuffel, Tancredi '21] 

• : (LC) [Abreu, Febres Cordero, Ita, Page, Sotnikov '21] 

➤ 5-point with one external mass 

• (planar) [Papadopoulos, Tommasini, Wever ’15]  [Canko, Papadopoulos, Syrrakos ’20]  ( ) [Badger, Bayu, Zoia '21]

2 → 3

pp → γ γ γ

pp → γ γ j

pp → j j j

W bb̄

[Abreu, Page, Pascual, Sotnikov '20]

[Chawdhry, Czakon, Mitov, Poncelet '21]

[Abreu, Ita, Moriello, Page, Tschernow, Zeng ’20]

soon within reach? 

๏  
๏ … 

pp → Z/W±/H + j j



NNLO SHORT SUMMARY

➤ fully differential NNLO: the new standard for  (towards ) 

➤ These calculations are … 

... very complex 

 independent methods and/or implementation  
 validation & benchmark:   Drell-Yan (sizeable differences) 
 challenges for code releases:  usability, quality assurance, … 

... CPU-cost intensive 

 prohibitive for e.g. PDF &  fits  
 fast interpolation grids:  APPLfast 
 n-Tuples

2 → 2 2 → 3

⇝
⇝
⇝

⇝ αs

⇝
⇝

[Alekhin, Kardos, Moch, Trócsányi '21]

[APPLgrid, fastNLO, NNLOJET ’19]

[LH ’15, ’17, ’19]



N3LO —- INCLUSIVE

H [Anastasiou et al. ’15] [Mistlberger ’18], H(VBF) [Dreyer, Karlberg '16], HH(VBF) [Dreyer, Karlberg '18], DY [Duhr, Dulat, Mistlberger ’20]

State-of-the-art

p p ! �⇤ ! `+`� p p ! W ! `⌫

g g ! H b b̄ ! H

g g ! HH

p p ! H + 2jp p ! W H
Figure 3: The cross sections for producing a W+ (left) or W� (right) as a function of the

virtuality Q normalised to the N3LO prediction. The uncertainty bands are obtained by

varying µF and µR around the central scale µcent = Q. The dashed magenta line indicates

the physical W boson mass, Q = mW .

virtual photon production in ref. [10], hinting once more towards a universality of the

QCD corrections to these processes.
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Figure 4: The cross sections for producing a W+ (left) or W� (right) as a function of

the virtuality Q. The uncertainty bands are obtained by varying µF and µR around the

central scale µcent = Q/2. The dashed magenta line indicates the physical W boson mass,

Q = mW .

Figure 4 shows the scale variation of the cross section with a di↵erent choice for the

central scale, µcent = Q/2. It is known that for Higgs production a smaller choice of the

factorisation scale leads to an improved convergence pattern and the bands from scale

variations are strictly contained in one another. We observe here that the two scale choices

share the same qualitative features.

The fact that the scale variation bands do not overlap puts some doubt on whether

it gives a reliable estimate of the missing higher orders in perturbation theory, or whether

other approaches should be explored (cf., e.g., refs. [85, 86]). In ref. [10] it was noted that

for virtual photon production there is a particularly large cancellation between di↵erent

initial state configurations. We observe here the same in the case of W boson production.

This cancellation may contribute to the particularly small NNLO corrections and scale

variation bands, and it may be a consequence of the somewhat arbitrary split of the content

– 7 –

Preliminary

pp ! W
�
H +X | PDF4LHC15

�(qq̄ ! W
�
H) [pb]

µ0
F
= µ0

R
= M

HW

LO QCD

NLO QCD

NNLO QCD

N
3
LO QCD

�
/
�
N

3
L
O

p
S [TeV]

๏ NNLO    N3LO:  
  outside & similar size band?! 

→
↔

3

z ! 0 [65, 66]. Finally, we have also checked that all
logarithmic terms in the renormalisation and factorisa-
tion scales produced from the cancellation of the UV and
IR poles satisfy the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution equation [67–69].

PHENOMENOLOGICAL RESULTS

In this section we present our phenomenological re-
sults for lepton-pair production via an o↵-shell photon at
N3LO in QCD. The strong coupling is ↵s(m2

Z) = 0.118,
and we evolve it to the renormalisation scale µr using the
four-loop QCD beta function in the MS-scheme assuming
Nf = 5 active, massless quark flavours. In the remainder
of this section we present our results for the cross section
as a function of the invariant mass of the lepton pair, and
we discuss the sources of uncertainty that a↵ect it.

Q/GeV KN
3
LO

QCD �(scale) �(PDF+↵S) �(PDF-TH)
�
(0)
Z+�⇤

�
(0)
�⇤

30 0.952 +1.5%
�2.5% ±4.1% ±2.7% 1.01

50 0.966 +1.1%
�1.6% ±3.2% ±2.5% 1.09

70 0.973 +0.89%
�1.1% ±2.7% ±2.4% 2.16

90 0.978 +0.75%
�0.89% ±2.5% ±2.4% 415

110 0.981 +0.65%
�0.73% ±2.3% ±2.3% 7.4

130 0.983 +0.57%
�0.63% ±2.2% ±2.2% 3.5

150 0.985 +0.50%
�0.54% ±2.2% ±2.2% 2.6

TABLE I Numerical predictions for the QCD
K-factor at N3LO.

Tab. I contains numerical values for the QCD K-factor,
i.e., the ratio of the N3LO cross section over the NNLO
cross section. We observe that for all values of the invari-
ant mass Q considered, the cross section receives negative
corrections at the percent level at LHC center-of-mass
energies. We include numerical estimates of the size of
the three uncertainties discussed. The central values and
scale variation bands for the K-factor are obtained with
the zeroth member of the PDF4LHC15 nnlo mc set. We
define

KN
3
LO

QCD
=

�(3)(µf = µr = Q)

�(2)(µf = µr = Q)
,

�(X) =
�X(�(3))

�(3)(µf = µr = Q)
,

(2)

where �(n)(µf = µr = Q) is the hadronic cross section
including perturbative corrections up to nth order evalu-
ated for µF = µR = Q and �X(�(n)) is the absolute un-
certainty of the cross section from source X as described
below. Furthermore, we show in the last column of tab. I
the ratio of the leading order cross section to produce a

lepton pair via Z boson and virtual photon exchange [70–
73] over exclusively virtual photon exchange.
Let us now analyse the two sources of uncertainty re-

lated to the PDFs (PDF+↵S an PDF-TH) and the de-
pendence of the cross section on the renormalisation and
factorisation scales. Fig. 1 displays the impact of our im-
precise knowledge of parton distribution functions and
the strong coupling constant on our abilities to predict
the DY cross section. Let us first explain how we eval-
uate �(PDF+↵S). The PDFs and the strong coupling
constant cannot be computed from first principle but
they need to be extracted from measurements. In order
to study the PDF uncertainties we use the Monte-Carlo
replica method following the PDF4LHC recommenda-
tion [74] that uses 100 di↵erent PDF sets to compute the
68 % confidence level interval. The strong coupling con-
stant uncertainty is computed using two correlated PDF
sets provided by ref. [74] and is then combined in quadra-
ture with the PDF uncertainty to give �(PDF + ↵S).
The uncertainty obtained in this way does not yet in-
clude the fact that currently all PDF sets are extracted
by comparing experimental to predictions at (at most)
NNLO level, nor do they include the next order in the
DGLAP equation. A fully consistent N3LO calculation,
however, would require the use of a complete set of N3LO
PDFs. We include an uncertainty reflecting the fact that
currently there are no N3LO PDF sets available. The
estimate of this uncertainty was obtained following the
recipe introduced in Ref. [18] that uses half the change of
the NNLO cross section in changing from NLO to NNLO
PDFs as a measure of uncertainty. As shown in Fig. 1
each of the two uncertainties is of the order of ±2% over
the whole range of invariant masses considered.
Fig. 2 shows the value of the NLO, NNLO and N3LO

cross sections normalised to the central N3LO value as
a function of the invariant mass Q2 of the lepton pair.
The bands indicate the dependence of the cross section
at di↵erent orders on the choice of the renormalisation
and factorisation scales. We choose Q as a central scale
and increase and decrease both scales independently by
a factor of two with respect to the central scale while
maintaining 1

2
 µR/µF  2. We observe that at N3LO

the cross section depends only very mildly on the choice
of the scale. In particular, for small and very large invari-
ant masses the dependence on the scale is substantially
reduced by inclusion of N3LO corrections compared to
NNLO. Remarkably, however, we find that for invariant
masses 50 GeV . Q . 400 GeV, the bands obtained by
varying the renormalisation and factorisation scales at
NNLO and N3LO do not overlap for the choice of the
central scale Q that is conventionally chosen in the liter-
ature. This is in stark contrast to the case of the N3LO
corrections to the inclusive cross section for Higgs pro-
duction in gluon and bottom-quark fusion [17, 19, 20],
where the band obtained at N3LO was always strictly
contained in the NNLO band (for reasonable choices of

[Duhr, Dulat, Mistlberger '20]

๏ Missing N3LO PDFs! 
๏ Do we need to worry about 

fitting h.o. corrections? 
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�o+ ॸ 13 h2o
" pγ1

h > 0.35 ·mγγ

" pγ2
h > 0.25 ·mγγ

" |yγ | < 2.37

" ɫƟǽƟƁʉ 1.37 < |yγ | < 1.52 ࢎƟȣƌƁŒɠ࢙ŷŒɫɫƟȋࢍ
" ɛǛȰʂȰȠ ǦɵȰȈŒʂǦȰȠ ǩȣ ∆R < 0.2

↪→
∑

∆Riγ<0.2

ph,i < 0.05 · Eγ
h

dσpp→Hdσpp→H

dY
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What is next? 
๏ Drell-Yan ! 
๏  . 

ingredients: 
 subtraction 

 @ NNLO 
 @ 3-loops 

๏ … ?

pp → γγ

qT
pp → γ γ j
pp → γ γ
[Caola, von Manteuffel, Tancredi '20]

DIFFERENTIAL  PRODUCTION AT LHC WITH N3LO CORRECTIONSγ*

Xuan Chen (KIT)                                                Fully differential  production at LHC with N3LO QCD                           May 18, 2021          15 γ*

➤ N3LO differential cross sections  

➤ Apply SCET+NNLOJET calculations for  distributionyγ*

➤ First N3LO differential cross 
section for  production 

➤ N3LO corrections contribute 
-2% with respect to NNLO 

➤ Uniformly distributed for  
cross central rapidity region 

➤ The N3LO scale variation band is 
outside the NNLO ones  

➤ Scale variations at central region: 
NNLO:   N3LO:  

➤ Scale variation range mildly 
increase towards large 

γ*

yγ*

+0.26%
−0.4%

+0.26%
−0.33%

yγ*

[talk by X. Chen —  Radcor LoopFest 2021]



๏ Short distance    “hard” 

‣ high scales: —  

๏ Long distance    “soft” 
‣ low scales: 

102 103 GeV

𝒪(few GeV)

σ = σ0 × (1 + αs + α2
s + α3

s + …)
fixed order:   LO   NLO   NNLO   N3LO …

σ = σ0 ⋅ exp (αn
s Ln+1 + αn

s Ln + αn
s Ln−1 + …)

⇝
large logs L!

resummation:   LL                 NLL          NNLL  …

SCATTERING REACTIONS @ LHC!



 DISTRIBUTION @ N3LL’qT

➤ N3LL’ = supplement N3LL with all constant terms of  
 predict N3LO fiducial cross section

𝒪(α3
s )

⇝ [Billis, Dehnadi, Ebert, Michel, Tackmann '21]
[Camarda, Cieri, Ferrera '21]

๏ N3LL’+NNLO improved 
description of data w.r.t 
N3LL+NNLO 

๏ linear power corrections   
  recoil 

(  after matching to NNLO) 

๏ reduced uncertainties  
few-% level across 

↔
±1-2 %

pℓℓ
T

10�8

10�7

10�6

10�5

10�4

10�3

10�2

10�1

1
/

�
d

�
/

d
p

`
`

t
[1

/
G

e
V

]

NNPDF3.1 (NNLO)

13 TeV, pp � Z/�⇤(� `+`�) + X

ATLAS fiducial

uncertainties with µR, µF, Q variations

N3LL+NNLO, w/ recoil

N3LL0+NNLO, w/ recoil

ATLAS data

0 10 20 30 50 100 200 500 1000
p``

t
[GeV]

0.90

0.95

1.00

1.05

1.10

R
a
t
io

t
o

d
a
t
a

1
/

�
d

�
/

d
�

⇤
R

a
t
io

t
o

d
a
t
a

Figure 5. Comparison of matched predictions at N3LL +NNLO (red) and N3LL0 +NNLO (blue) with
ATLAS data [96] for p``t (left panel) and �⇤

⌘ (right panel). The fixed-order component is turned off below
�⇤
⌘ = 3.4 ·10�2 in the right panel, see main text for details. In the left plot, the x axis is linear up to 30 GeV

and logarithmic above.

and rather insist on the variation of parameter v0 in a sensible range, such as [2/3, 3/2] around the
central v0 value, as better suited to this aim. This variation is responsible for the slight widening of
the band between 30 GeV and 100 GeV, which we believe to reflect a genuine matching uncertainty
in this region.

In Fig. 5 we finally compare matched predictions in the fiducial setup to ATLAS data [96],
both for p

``

t
(left panel) and for �

⇤
⌘

(right panel). The left panel includes the same theoretical
predictions shown in the right panel of Fig. 3 (keeping the same colour code), which are here
normalised to their cross section in order to match the convention of the shown data. The matched
N3LL0+NNLO predictions for p

``

t
show a remarkable agreement with experimental data, with a

theoretical-uncertainty band down to the 2 - 5% level, essentially overlapping with data in all bins
form 0 to 200 GeV (barring one low-p``

t
bin, where the cancellation between the fixed-order and the

expanded components is particularly delicate, and few middle-p``
t

bins where the agreement is only
marginal). The inclusion of ‘primed’ effects tends to align the shape of the theoretical prediction to
data, so that the former never departs more than 1 - 2% from the latter below 200 GeV, as opposed
to the more visible relative distortion of the N3LL +NNLO below 5 GeV and above 50 GeV. The
�
⇤
⌘

results on the right panel follow by and large the same pattern just seen for p
``

t
, with ‘primed’

effects being relevant to improve the data-theory agreement over the entire range, expecially at very
small �⇤

⌘
, and theoretical uncertainties at or below the ±3% level.

We incidentally note that, due to the extremely soft and collinear regime probed by �
⇤
⌘

data,
the fixed-order component features some fluctuations at small �⇤

⌘
; consequently, we have opted to

turn it off in the first bins (up to �
⇤
⌘
= 3.4 · 10�2), which implies that the matching formula in

that region corresponds to the sole resummation output, multiplied by Z(v). On the one hand
this shows that resummation alone is capable of predicting data remarkably well both in shape
and in normalisation at very small �⇤

⌘
; on the other hand it highlights the necessity of dedicated

high-statistics fixed-order runs in order to reliably extract information on fiducial cross sections at
N3LO by means of slicing techniques, especially in presence of symmetric lepton p

`
±

t
cuts.
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pℓℓ
T

[Ebert, Tackmann ’19]

[Re, Rottoli, Torrielli '21]

[Becher, Neumann ’20; Billis et al. ’21; Carmada et al. ’21; Re et al. ’21]



Resummation   

inclusive (analytic), tailored to 
specific observable with high 

logarithmic accuracy

Parton Showers (PS) 

exclusive (MC algorithm), 
general purpose  

+ non-pertubative models 
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ct
ur
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RESUMMATION  &  PARTON SHOWERS

๏ NNLO + PS:   NNLOPS [Hamilton, et 

al. '12,...] UNNLOPS [Höche, Li, Prestel '14,...] / 

[Plätzer '12] Geneva [Alioli, Bauer, et al. ’13,...] 
MiNNLOPS [Monni, Nason, Re, Wiesemann, 
Zanderighi '19,...]

๏  N3LL(‘)  

๏ NLL non-global logs 

๏ …

qT
[Becher, Neumann ’20; Billis et al. ’21; Carmada et al. ’21; Re et al. ’21]

[Banfi, Dreyer, Monni ’21]
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RESUMMATION  &  PARTON SHOWERS

๏ NNLO + PS:   NNLOPS [Hamilton, et 

al. '12,...] UNNLOPS [Höche, Li, Prestel '14,...] / 

[Plätzer '12] Geneva [Alioli, Bauer, et al. ’13,...] 
MiNNLOPS [Monni, Nason, Re, Wiesemann, 
Zanderighi '19,...]

๏  N3LL(‘)  

๏ NLL non-global logs 

๏ …

qT
[Becher, Neumann ’20; Billis et al. ’21; Carmada et al. ’21; Re et al. ’21]

[Banfi, Dreyer, Monni ’21]
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๏ first NNLO+PS with coloured final state

[Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi '21]
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RESUMMATION  &  PARTON SHOWERS

?
Resummation   

inclusive (analytic), tailored to 
specific observable with high 

logarithmic accuracy

Parton Showers (PS) 

exclusive (MC algorithm), 
general purpose  

+ non-pertubative models 

∞

๏ What is the (logarithmic) accuracy of parton showers?  

๏ Is it (N)LL? For what observable(s)?  

๏ crucial to understand    design new PS ⇝ [Dasgupta, et a. ’20;  Hamilton, et al. ’20;  Karlberg, et al. ’21]
[Forshaw, Holguin, Plätzer '20] [Nagy, Soper ’19] […]



INVESTIGATING SHOWER ACCURACY*

➤ Compare PS to NLL observables:   for fixed αs → 0 αsL 4

FIG. 2. Left: ratio of the cumulative y23 distribution from several showers divided by the NLL answer, as a function of
↵s ln y23/2, for ↵s ! 0. Right: summary of deviations from NLL for many shower/observable combinations (either ⌃shower(↵s !
0,↵sL = �0.5)/⌃NLL � 1 or (N subjet

shower(↵s ! 0,↵sL
2 = 5)/N subjet

NLL � 1)/
p
↵s). Red squares indicate clear NLL failure; amber

triangles indicate NLL fixed-order failure that is masked at all orders; green circles indicate that all NLL tests passed.

Fig. 1.
The left-hand plot of Fig. 1 shows the Pythia8 dipole

algorithm (not designed as NLL accurate), while the
middle plot shows our PanGlobal shower with � = 0.
The dipole result is clearly not independent of � 12

for ↵s ! 0, with over 60% discrepancies, extending the
fixed-order conclusions of Ref. [37]. The discrepancy is
only ' 30% for gg events (not shown in Fig. 1), and
the di↵erence would, e.g., skew machine learning [67] for
quark/gluon discrimination. PanGlobal is independent
of � 12. The right-hand plot shows the ↵s ! 0 limit
for multiple showers. The overall pattern is as expected:
PanLocal works for � = 0.5, but not � = 0, demon-
strating that with kt ordering it is not su�cient just to
change the dipole partition to get NLL accuracy. Pan-
Global works for � = 0 and � = 0.5. (Showers that
coincide for ↵s ! 0, e.g. Dire v1 and Pythia8, typically
di↵er at finite ↵s, reflecting NNLL di↵erences.)

Next, we consider a range of more standard observ-
ables at NLL accuracy. They include the Cambridgep
y23 resolution scale [68]; two jet broadenings, BT and

BW [69]; fractional moments, FC1��obs , of the energy-
energy correlations [47]; the thrust [70, 71], and the max-
imum ui = kti/Qe��obs|⌘i| among primary Lund declus-
terings i. Each of these is sensitive to soft-collinear ra-
diation as kt/Qe��obs|⌘|, with the �obs values shown in
Fig. 2 (right). Additionally, the scalar sum of the trans-
verse momenta in a rapidity slice [72], of full-width 2, is
useful to test non-global logarithms (NGLs). These ob-
servables all have the property that their distribution at
NLL can be written as [47, 53, 72–74]

⌃(↵s,↵sL) = exp
⇥
↵�1
s g1(↵sL) + g2(↵sL) +O

�
↵n
sL

n�1
�⇤
,

(6)
where ⌃ is the fraction of events where the observable
is smaller than eL (g1 = 0 for the rapidity slice kt).
We also consider the kt-algorithm [75] subjet multiplic-

ity [76], [51]§ 5.
Fig. 2 (left) illustrates our all-order tests of the shower

for one observable,
p
y23. It shows the ratio of the ⌃

as calculated with the shower to the NLL result, as a
function of ↵s ln

p
y23 in the limit of ↵s ! 0. The stan-

dard dipole algorithms disagree with the NLL result, by
up to 20%. This is non-negligible, though smaller than
the disagreement in Fig. 1, because of the azimuthally
averaged nature of the

p
y23 observable. In contrast the

PanGlobal and PanLocal(� = 0.5) showers agree with
the NLL result to within statistical uncertainties.
Fig. 2 (right) shows an overall summary of our

tests. The position of each point shows the result of
⌃shower(↵s ! 0,↵sL = �0.5)/⌃NLL�1 or (N subjet

shower(↵s !
0,↵sL2 = 5)/N subjet

NLL � 1)/
p
↵s. If it di↵ers from 0, the

point is shown as a red square. In some cases (amber tri-
angles) it agrees with 0, though an additional fixed-order
analysis in a fixed-coupling toy shower [37] [51]§ 2 re-
veals issues a↵ecting NLL accuracy, all involving hitherto
undiscovered spurious super-leading logarithmic terms.1

Green circles in Fig. 2 (right) indicate that the
shower/observable combination passes all of our NLL
tests, both at all orders and in fixed-order expansions.
The four shower algorithms designed to be NLL accurate
pass all the tests. These are the PanLocal shower (dipole
and antenna variants) with � = 1

2 and the PanGlobal
shower with � = 0 and � = 1

2 .

1 Such terms, (↵sL)n(↵sL2)p in ln⌃, starting typically for n = 3
(sometimes 2), p � 1, appear for traditional kt ordered dipole
showers for global (�obs > 0) and non-global observables [51]§ 3.
Terms of this kind can generically exist [77–79], but not at
leading-colour or for pure final-state processes with rIRC [47]
safe observables. In many cases, the spurious super-leading log-
arithms appear to resum to mask any disagreement with NLL.

๏ Is this observables set “complete”?  How to extend it for pp? 

๏ Can this test be adopted by other groups?

[Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez '20]

[Nagy, Soper, '20]* see also:



THEORY UNCERTAINTIES  PT.1

➤ increasingly urgent to have more robust uncertainty estimates 

 e.g. for theory uncertainties in PDF fits 

❖ scale ambiguities in jets  (  v.s. ) 

❖ scales in ratios:   

• top spin correlation  (to expand or not @ NLO) 

• pT(Z) / pT(W)  (correlate: very small residual uncertainties) 

• ang. coefficients Ai  (un-correlate in the same process) 

❖ nuisance parameters in pT res.

⇝

pT,j ĤT



THEORY UNCERTAINTIES  PT.2

➤ alternative approaches 
 statistical interpretation? 

Bayesian model 
⇝

[Cacciari, Houdeau '11]

[Bonvini ’20]
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[Duhr, AH, Mazeliauskas, Szafron '21]

๏ treatment of correlations?๏ PDF    model and priors↔

σN3LO(ggH)

mγγ



FINAL REMARKS.

➤ Remarkable progress in precision calculations: 

• 2 → 8 @ NLO,  2 → 3 @ NNLO,  2 → 1 @ N3LO 

➤ still many issues & challenges   ⇒   discussions sessions! 

➤ More topics to consider:    https://phystev.cnrs.fr/wiki/2021:topics 

• mixed QCD-EW corrections. 

• pT(Z)—in the world of per-cent precision 

➡ mb effects, QED ISR, NP effects, …  

• wishlist:  what is needed for HL-LC, 100 TeV, EIC? 

• … your ideas!

ENJOY (VIRTUAL) LES HOUCHES!

https://phystev.cnrs.fr/wiki/2021:topics

