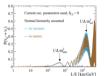
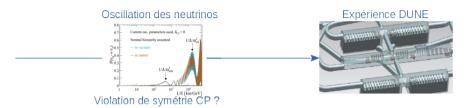


# Performances de l'Expérience ProtoDUNE Double Phase


Présentation Deuxième Année de Thèse Pablo Kunzé

Encadré par Laura Zambelli & Dominique Duchesneau 9 juillet 2021

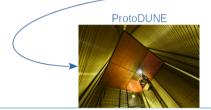





#### Oscillation des neutrinos

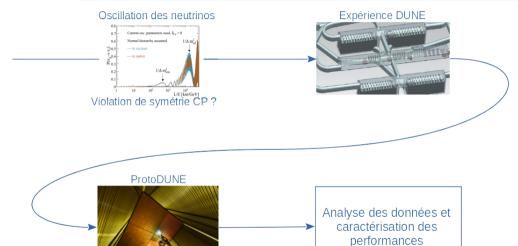


Violation de symétrie CP?




















#### Oscillation des neutrinos



Dans le modèle standard : 3 neutrinos

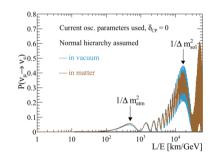


neutrino



neutrino




neutrino

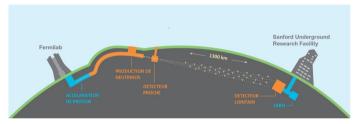
Oscillation des neutrinos : Un neutrino peut changer de saveur au cours de sa propagation

→ Les neutrinos ont une masse

On connaît les  $\theta$  et  $\Delta m^2$  à quelques % DUNE veut déterminer précisément :

- Hiérarchie des masses (5 $\sigma$  au bout de 3 ans)
- Violation symétrie CP domaine des  $\nu$  ( $\delta_{CP}=0$  exclu à  $5\sigma$  avec 50% des valeurs au bout de 10 ans)






## L'Expérience DUNE



Principe : Après une grande distance de propagation, mesure de  $P(\nu_{\mu} \rightarrow \nu_{\mu})$ ,

$$\overline{P(ar{
u}_{\mu}
ightarrowar{
u}_{\mu})},\ P(
u_{\mu}
ightarrow
u_{e})\ ext{et}\ P(ar{
u}_{\mu}
ightarrowar{
u}_{e})$$

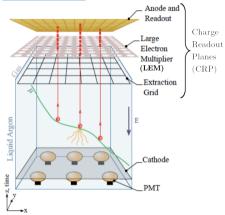


Source : Faisceaux pur  $u_{\mu}$  ou  $\bar{\nu}_{\mu}$  produit auprès d'un accélérateur

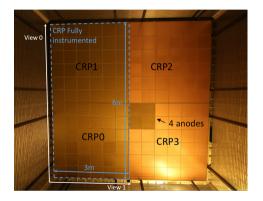
 $\mathsf{E}_{
u} \sim \mathsf{GeV}$ 

Détecteur : 1300 km de la source et à 1480 m de profondeur

4 modules Argon Liquide de  $60 \times 12 \times 12 \, \text{m}^3$  soit  $10 \, \text{kt}$  chacun


Chambre à Projection Temporelle (TPC)

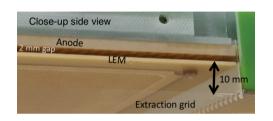



## ProtoDUNE Double Phase TPC à Argon Liquide



#### Double Phase




#### CRP vus du bas du détecteur





## Objectifs de performances ProtoDUNE DP



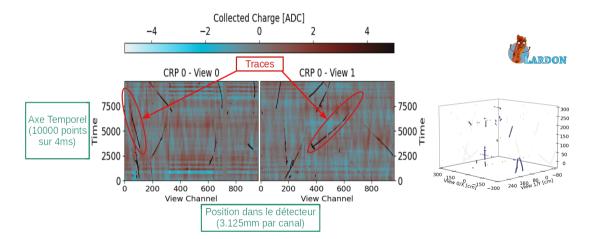


#### ProtoDUNE DP doit montrer:

- ► Champ de dérive de 500 V/cm sur 6 m
- ► Gain optimal :  $\sim$  20
- stabilité dans le temps
- ▶ Pureté de 100 ppt d' $O_2$  ( $\tau = 3 \text{ ms}$  temps de vie des e<sup>-</sup>)

ProtoDUNE DP  $6 \times 6 \times 6 \,\mathrm{m}^3$  300 t détectant les rayons cosmiques.

Données prises sur plusieurs jours en Septembre, Octobre, Novembre 2019 et Janvier 2020.

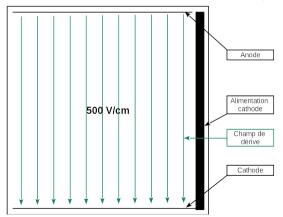

Nouvelle prise de données prévue Automne 2021.

Observable : 
$$\frac{dQ}{ds}|_{\text{collect\'ee}} = G \cdot R(E_{\text{d\'erive}}) \cdot \frac{dQ}{ds}|_{\text{cr\'e\'e}} e^{-t/\tau}$$



## Exemple d'un évènement pour un CRP



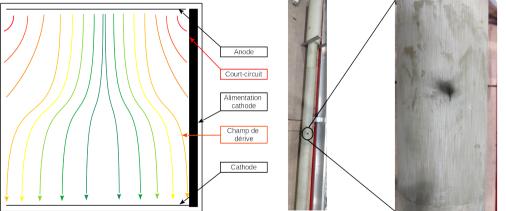





## Champ de dérive



Pour le bon fonctionnement d'une TPC à Argon Liquide, le champ de dérive doit être uniforme et pour ProtoDUNE DP de  $500\,\mathrm{V/cm}$  :



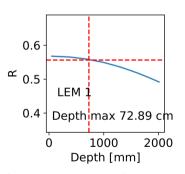


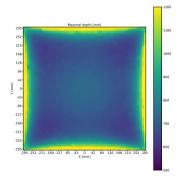

## Champ de dérive



#### Mais, court-circuit dans l'alimentation de la cathode :




Rendant l'analyse bien plus complexe et ne permettant pas de tester pleinement la


technologie.

## Définition d'une profondeur maximale



Avec une simulation COMSOL incluant le court circuit, on a le champ électrique. Pour l'analyse, on veut se restreindre à un zone où le champ varie peu. Pour ça, on veut que le facteur de recommbinaison (qui dépend du champ de dérive) ne varie pas de plus de 2% :






On obtient une profondeur maximale en chaque point du détecteur.

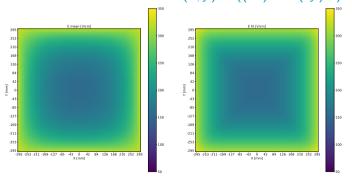




Carte de champ issu de simulation  $COMSOL \rightarrow Paramétrisation$  du champ en fonction de la position (X,Y) avec un fit 2D et en se restreignant aux profondeurs maximales

Champs moyenné jusqu'à la profondeur maximale

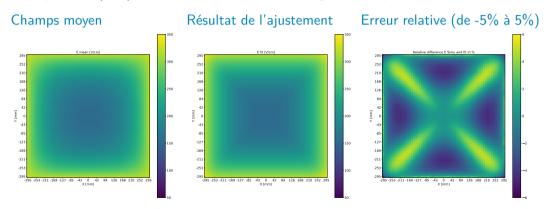







Carte de champ issu de simulation  $COMSOL \rightarrow Paramétrisation$  du champ en fonction de la position (X,Y) avec un fit 2D et en se restreignant aux profondeurs maximales

Champs moyen

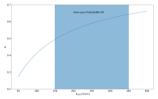

Résultat de l'ajustement avec Squircle  $E(x, y) = ((ax)^{10} + (ay)^{10})^{1/4} + b$ 







Carte de champ issu de simulation  $COMSOL \rightarrow Paramétrisation$  du champ en fonction de la position (X,Y) avec un fit 2D et en se restreignant aux profondeurs maximales





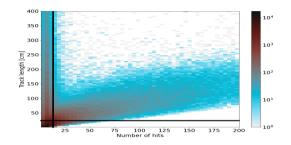



On est intéressé par  $\frac{dQ}{ds}$  Lors de la reconstruction des traces, pour chaque hits trouvés :

► Correction de la charge dQ car affecté par le facteur de recombinaison qui dépend du champ de dérive



► Calcul du ds  $(ds = \sqrt{dx^2 + dy^2 + dz^2})$  en corrigeant le dz avec la vitesse de dérive correspondant au champ paramétré




#### Sélection des traces



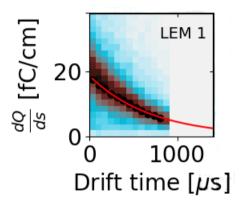
On veut des  $\mu$  ( $\frac{dQ}{ds}$  =7.27 fC/cm par vue) et des traces de bonnes qualités :

- ► Traces en retard et rentrant par l'anode (le haut du détecteur)
- ► Nombre de hits dans la trace
- ► Longueur de la trace
- ► Angle zénithal de la trace





## Analyse de cosmiques : pureté de l'Argon liquide

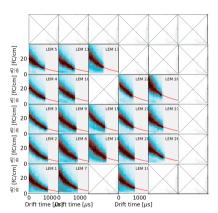


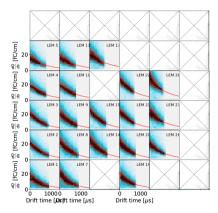

Dans un premier temps, on veut retrouver la pureté ou le temps de vie des électrons dans l'Argon liquide avec  $\frac{dQ}{ds}|_{\text{collectée}} = G \cdot R(E_{\text{dérive}}) \cdot \frac{dQ}{ds}|_{\text{créée}} e^{-t/\tau}$ :

- Les électrons sont capturés par les impuretés pendant leur dérive dans l'Argon liquide selon  $e^{-t/\tau}$  avec t le temps de dérive et  $\tau$  le temps de vie des électrons  $\left(\rho[\mathrm{ppt}]\sim\frac{300}{\tau[\mathrm{ms}]}\right)$
- ► En ajustant la distribution du  $\frac{dQ}{ds}|_{collect\acute{e}}$  en fonction du temps de dérive, on peut alors retrouver le temps de vie des électrons



# Pureté de l'Argon liquide pour un run d'Octobre 2019 Pp

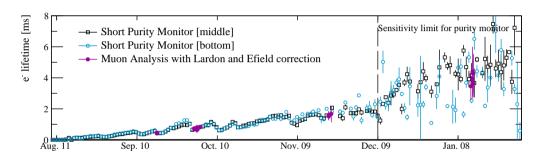




- : MPV (Valeur la plus probable) Ajustement Landau ® Gaussien
- : Ajustement exponentiel



# Pureté de l'Argon liquide pour un run d'Octobre 2019 Pp








Retrait des LEMs sur le bord du détecteur et qui ne sont pas aux tensions nominales En movenne  $au=760.59\pm78.68\,\mu s$ 

## Comparaison avec les moniteurs de pureté





Les valeurs de temps de vie trouvées sont compatibles avec les moniteurs de pureté. Temps de vie atteint meilleur que prévu.



# Autres analyses avec les traces de cosmiques



 $\frac{\mathrm{d}Q}{\mathrm{d}s}|_{\mathrm{collect\acute{e}e}} = G \cdot R(E_{\mathrm{d\acute{e}rive}}) \cdot \frac{\mathrm{d}Q}{\mathrm{d}s}|_{\mathrm{cr\acute{e}\acute{e}e}} e^{-t/ au}$  et pour un muon cosmique, 7.27 fC/cm par vue.

On peut notamment regarder le gain effectif en fonction du champ d'amplification des LEMs :



 Analyses en fonction des autres champs (extraction, dérive) et en fonction du temps



#### En résumé



- Les non-uniformités du champ de dérive dû au court circuit sont prises en comptes
- Les temps de vie retrouvées par l'analyse sont compatibles avec les moniteurs de pureté
- Analyses sur la charges en cours de finalisation (papier en préparation)
- ▶ J'ai aussi fait 18h d'enseignements de TPs physique et 18h de TPs Outils Logiciels (Calcul avec Maple) en 1ère année d'IUT GEII



## **Perspectives**



- Reprise de données en double phase à l'automne pour tester la nouvelle alimentation de la cathode
  - → Analyse du bruit, de la pureté, du gain...

#### Double Phase → Vertical drift

- ► Temps de vie très bon
- ► Étude sur le CRP3 (sans amplification)



Confirme faisabilité Vertical drift



► Étude de sensibilité pour DUNE



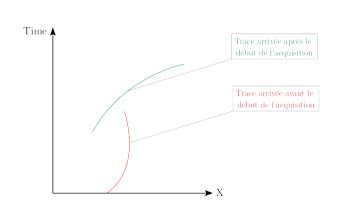
# Merci



Merci de votre attention.



# Backup




Back-up

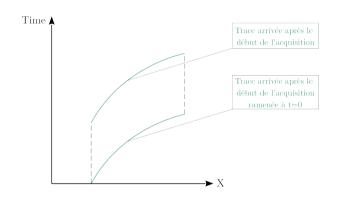


## Sélection des traces : traces en retard





La prise de données se faisant en déclenchement aléatoire, pour être sûr du temps de dérive des électrons :


- ► Traces en retard
- ► Traces rentrant du dessus du détecteur





## Sélection des traces : traces en retard





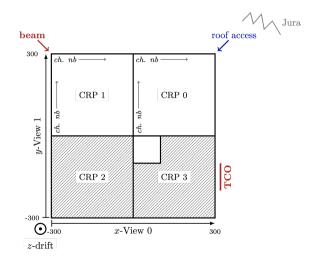
Pour être sur du temps de dérive des électrons :

- ► Traces en retard
- Traces rentrant du dessus du détecteur
- On décale ces traces de sorte qu'elles démarrent à t=0



#### **New selections**

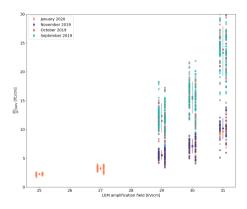



- ► Number of hits in each view > 15
- ► Only late tracks, entering at the anode (to be sure of the track's depth for purity analysis), and with distance between starting point and side of the active volume > 30cm
- ► Track starting point at more than 3*cm* from LEMs borders
- ► All length > 20cm
- ▶  $95^{\circ} < \theta < 178^{\circ}$

► 10% of total tracks passing selections



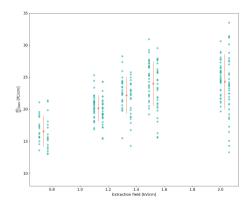
#### **Lardon conventions**







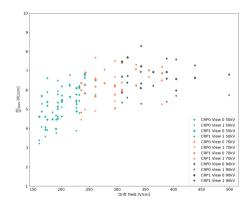

## dQ/ds vs LEM amplification







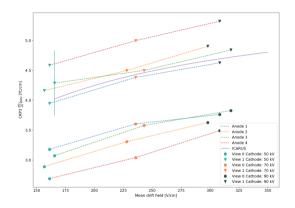

## dQ/ds vs extraction








## dQ/ds vs champ de dérive








## dQ/ds vs champ de dérive CRP 3





