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Does machine learning help string theory?

Yes. ML allows to

Explore and analyse complex settings, such as the string theory landscape

Explore, classify and approximate complex features
e.g. for (Calabi-Yau) geometries relevant for string compactifications

Previous work
Predicting topological properties of Calabi-Yau manifolds
(supervised/unsupervised learning; faster than algebraic geometry methods)

Approximate the Calabi-Yau metric

Construct and study string derived semi-realistic standard models
(e.g. reinforcement learning, genetic algorithms)

Understanding string landscape: e.g. swampland conjectures.
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Motivation: why compute the CY metric?

Calabi-Yau manifolds are most common compactification spaces.
Many examples:
CICY 3-folds and 4-folds Candelas-et.al:88, Greene-et.al:89, Haupt-et.al:14

CY hypersurfaces in 4D toric ambient spaces Kreuzer–Skarke:00

Algebraic geometry  topology known (in principle)
But no closed form expression of CY metric (in dim ≥ 3).

Couplings and masses in low-energy EFT depend on metric:
e.g. set normalisation of Yukawa couplings so determine mass hierarchies...

Can be used to test swampland conjectures, e.g. Ashmore–Ruehle:21.
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This talk in summary:

Present development of package that can

machine learn metrics on CY manifolds (focus on 3D)...

with multiple complex and Kähler moduli ...

from both CICY and Kreuzer-Skarke CY lists

Novel features and challenges (w.r.t previous work)

multiple Kähler moduli  new procedures to control Kähler class

toric ambient space  new procedures for point sampling
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The cymetric package

The package cymetric: low-threshold, open source

python, Mathematica, Sage interface

main functionality demonstrated in notebooks

small experiments can be run on laptop (large on cluster)

We hope this adopts and adapts to your favourite string theory problem
– and contributions to the package are welcome

https://github.com/pythoncymetric/cymetric
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The cymetric package
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Calabi-Yau Manifolds

Calabi-Yau Theorem

Let X be a (compact), complex, Kähler manifold

I holomorphic top-form Ω
I real, closed (1,1)-form J  Kähler metric g = ∂∂̄K

Exists unique JCY = J +∂∂̄φ such that corresponding metric gCY is Ricci flat.

This unique JCY solves the Monge-Ampère equation

JCY ∧ JCY ∧ JCY = κ Ω ∧ Ω̄ = κ d VolCY

where κ is some complex constant.

CICY and KS CY:
J and Ω can be computed analytically from ambient space data

In general, no analytic expression is known for gCY on compact CYs.
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Calabi-Yau Manifolds

CY constructions
CICY: complete intersection of hypersurfaces in A = Pn1 × · · · × Pnh

Specified by homogeneous polynomials pr

KS CY: hypersurface in 4D toric ambient space A ∼ reflexive polytope.
Specified by polynomial p.

CY data: Ω and J
Ω is computed as a residue in ambient space coordinates

CICY: Ω = dz1∧dz2∧dz3

det(∂pr/∂zq) KS CY: Ω = dz1∧dz2∧dz3

∂p/∂z4

This also gives the CY volume form d VolCY = Ω ∧ Ω̄

Constructing Kähler form J
I Ambient spaces have Fubini–Study Kähler forms, e.g. for Pn Jn = 1

2π

∑
|znµ|2

I Restrict to CY using defining polynomials: basis Jα of (1, 1) forms
I Fubini-Study Kähler form on CY given by JFS = tαJα

The corresponding gFS is non-Ricci-flat, and JFS does not satisfy the MA
equation.
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Calabi-Yau Manifolds

Unique Ricci flat metric gCY given by JCY that solves the MA equation

JCY ∧ JCY ∧ JCY = κ Ω ∧ Ω̄ = κ d VolCY

where κ is some complex constant.

Lacking analytic expression for gCY (or JCY ), develop numerical approximations:

Donaldson algorithm
Donaldson:05, Douglas-et.al:06, Douglas-et.al:08, Braun-et.al:08, Anderson-et.al:10, ...,

Energy functionals
Headrick–Nassar:13, Cui–Gray:20

Machine learning
Ashmore–He–Ovrut:19, Douglas–Lakshminarasimhan–Qi:20,

Anderson–Gerdes–Gray–Krippendorf–Raghuram–Ruehle:20, Jejjala–Mayorga–Peña:20 ,

ML-Lukas-Ruehle-Schneider:21,..
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Learning CY metrics with cymetric

cymetric

ML package cymetric decomposes into

1 point generators using Schiffman–Zelditch theorem
CICYs: Apply algorithm by Douglas et. al: 06, Braun et.al:08.
KS CYs: We generalise algorithm to toric ambient spaces.

2 custom TensorFlow neural networks that predict the CY metric
(at given point in moduli space)

No ML in point generation; methods used also for other numerical methods.
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cymetric: Point generators

Natural attempts (problematic)

Give random values to all ambient coordinates, reject all points off the CY.

Give random values to some ambient coordinates, use defining polynomials to
solve for the rest.

Luckily, this problem has (almost completely) been solved before.

Magdalena Larfors (Durham U., Uppsala U.) Learning CY metrics 25 April 2022 12 / 32



cymetric: Point generators

Creating a point sample on CICY 3-fold Douglas-et.al:06, Braun-et.al:08

Simplest case: Quintic hypersurfact in A = P4

Generate random points distributed w.r.t FS metric on P4

use standard tools to pick uniformly distributed points on S9, then rescale.

Connect 2 such points by a 1-parameter line and intersect with CY
hypersurface: 5 points on CY

Theorem[Shiffman and Zelditch]: These points are distributed according to
the FS measure:

dA = JFS ∧ JFS ∧ JFS .

This generalizes to other CICYs: Generate random points on Pr from S2r+1,
distribute free parameters equal to number of hypersurfaces and construct
lines, surfaces, ... , then intersect with CY hypersurfaces.

Implemented in cymetric as CICYPointGenerator
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cymetric: Point generators

Creating a point sample on KS CY 3-fold, part 1

Can relate ambient toric variety A to projective spaces
=⇒ can apply Shiffman–Zelditch theorem, and generalise the CICY algorithm.

The sections of the toric Kähler cone (generated by Jα) ∼ coordinates of Pr

Φα : [x0 : x1 : . . .] → [s
(α)
0 : s

(α)
1 : . . . : s(α)

rα ] ,

The FS metrics on Pr give a (non-FS) Kähler metric on A.

Can build random sections

S =
rα∑
j=0

a
(α)
j sαj

using i.i.d. Gaussian coefficients a
(α)
j ∼ N (0, 1)

Shiffman–Zelditch =⇒ Such S are distributed according to the FS measure.
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cymetric: Point generators

Creating a point sample on KS CY 3-fold, part 2

Got map Φα : [x0 : x1 : . . .] → [s
(α)
0 : s

(α)
1 : . . . : s

(α)
rα ] and

can generate random point sample using sections S =
∑rα

j=0 a
(α)
j sαj .

Now express the CY 3-fold in terms of Kähler cone sections s
(α)
j

I Problem 1: too many sections!
I Problem 2: relations among sections

Resolve problems: first find relations among sections ...
I Groebner basis analysis using Singular (access via Sage)
I Linear algebra routine works generically

... then combine relations + hypersurface eq:

CY 3-fold as non-complete intersection in Â ∼=
⊗h1,1

α=1 Prα .

End result: sample of random points on CY distributed wrt FS measure.

dA = Φ∗α(JFS, α) ∧ Φ∗β(JFS, β) ∧ Φ∗γ(JFS, γ) .

Implemented in cymetric as ToricPointGeneratorMathematica
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cymetric: Point generators

Summary

Both for CICY and KS CY manifolds, cymetric point generators provide a
sample of random points on CY distributed wrt known (FS) measure.

github notebooks illustrate how the point generators work in practice.
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cymetric: Neural networks

Problem: find Ricci flat CY metric gCY ⇐⇒ find JCY that solves the MA eq.

JCY ∧ JCY ∧ JCY = κ Ω ∧ Ω̄ = κ d VolCY

where κ is some complex constant.
Recall:

Know Ω and JFS s.t. [JCY ] ∼ [JFS].
Have sample of points on CY randomly distributed w.r.t to known measure dA .

Plan:
Input points into NN that we train and test using our physics knowledge.
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cymetric: Neural networks

NN training:
parameters updated via stochastic gradient descent to minimise loss functions.
User controls network hyperparameters
(width, depth, batch size, activation function, learning rate, etc)
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cymetric: Neural networks

Input and performance

Input: N points pi , randomly distributed w.r.t to known measure dA on CY.

After training, measure performance: does the MA equation hold? is the metric
Ricci flat?

Check via established benchmarks:

σ =
1

VolCY

∫
X

∣∣∣∣1− κ Ω ∧ Ω

(Jpr)3

∣∣∣∣ , R =
1

VolCY

∫
X

|Rpr| .

where we use random point sample to Monte Carlo integrate any function f∫
X

dVolCYf =

∫
X

dVolCY

dA
dA f =

1

N

∑
i

wi f |pi with wi =
dVolCY

dA
|pi
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cymetric: Neural networks

cymetric models: Different Ansätze for the NN prediction

Ansatz
Free gpr = gNN

Additive gpr = gFS + gNN

Multiplicative, elementwise gpr = gFS + gFS � gNN

Multiplicative, matrix gpr = gFS + gFS · gNN

φ-model gpr = gFS + ∂∂̄φ
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Learning CY metrics with cymetric

Custom loss terms controls learning - user chooses αi

L = α1LMA + α2LdJ + α3Ltransition + α4LRicci + α5LK-class.

LMA =

∣∣∣∣∣∣∣∣1− 1

κ

det gpr

Ω ∧ Ω̄

∣∣∣∣∣∣∣∣
n

,

LdJ =
∑
ijk

||<cijk ||n + ||=cijk ||n , with cijk = gi j̄,k − gkj̄,i and gi j̄,k = ∂kgi j̄

Ltransition =
1

d

∑
(s,t)

∣∣∣∣∣∣g (t)
pr − T(s,t) · g (s)

pr · T †(s,t)

∣∣∣∣∣∣
n

LRicci = ||R||n =
∣∣∣∣∂∂̄ ln det gpr

∣∣∣∣
n
,

LK-class =
1

h11

h11∑
i=1

∣∣∣∣∣∣∣∣µJFS (Li )−
∫
X

(Jpr)
n−1Fi

∣∣∣∣∣∣∣∣
n

.
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Experiments: Fermat Quintic

Train NN for 50 epochs (width 64, depth 3, GELU activation functions, batch size
of 64, learning rate of 1/1000, all α = 1); on laptop about 1.5 hours/model.
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Experiments: Fermat Quintic
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Multiple Kähler moduli: preserving the Kähler class

The Kähler class [J] is fixed by∫
C

J = vol(C ) ,

∫
D

J ∧ J = vol(D) ,

∫
X

J ∧ J ∧ J = vol(X ) ,

Are we guaranteed this is fixed during training?

Yes, if there is only one Kähler class (e.g. Quintic)

Yes, if metric Ansatz ensures correction to J is exact

Yes, if NN trained with Kähler class loss function LK-class

(works for all metric Ansätze).
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Multiple Kähler moduli: preserving the Kähler class

Loss function preserving the Kähler class

Could define a loss function fixing curve, divisor and CY volumes
(but have not; this requires sampling points on curves and divisors).

Instead use that OX (k) (line bundle over X with c1 = [kαJα]) has slope

µJ :=

∫
X

J ∧ J ∧ c1(OX (k)) = − i

2π

∫
X

J ∧ J ∧ F = dαβγt
αtβkγ ,

The slope is topological, so agrees for metrics in the same Kähler class!

Loss function: for h11-dim basis of line bundles with k1 = (1, 0, 0, ...) etc.
compute

LK-class = 1
h11

∑h11

i=1

∣∣∣∣µJFS
(Li )−

∫
X
Jpr ∧ Jpr ∧ Fi

∣∣∣∣
n

Requires more points than contained in mini-batch; NN code more involved.

Cross-check after training: compute volume and line bundle slopes from
intersection numbers, from FS metric and from CY metric.

Magdalena Larfors (Durham U., Uppsala U.) Learning CY metrics 25 April 2022 25 / 32



Example: Bicubic

The bicubic is given by a homogeneous degree (3,3) polynomial in A = P2 × P2.
It has 2 Kähler moduli and 83 complex structure moduli.
We choose the complex structure moduli, i.e. specify the (3,3) polynomial.

Choose several Kähler moduli paired with line bundles of vanishing slope:

case 1 2 3 4 5

t

(
1.414
1.414

) (
0.687
1.878

) (
0.421
1.955

) (
0.299
1.977

) (
0.962
1.753

)
OX (k) OX (1,−1) OX (1,−2) OX (1,−3) OX (1,−4) OX (2,−3)

cymetric point generation and training

Generate 100 000 points for each choice of Kähler parameters

Train φ-model for 100 epochs (width 64, depth 3, GELU activation functions,
batch size of 64, learning rate of 1/1000).
Training has been carried out on a single CPU in about two hours.
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Example: Bicubic
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Final loss versus asymmetry

Figure: Bi-cubic training curves for several choices of Kähler parameters. The last plot
represents the final loss, obtained by averaging over the last 10 epochs, as a function of
t2/t1. (Training data, blue: 4× sigma loss, orange: Kähler class loss).
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Bicubic: checking the Kähler class

After training can compute the slope using the intersection numbers, FS and CY
metric for all choices of Kähler moduli. They agree.

We also check that the volumes agree (not used in Kähler class loss function)

case 1 2 3 4 5 6 7

Vexact 8.49 4.97 2.93 2.02 6.87 7.59 6.16
VFS 8.49 4.98 2.9 1.93 6.81 7.59 6.12
error < 1% < 1% ∼ 1% ∼ 4% ∼ 1% < 1% < 1%
VCY 8.57 5.03 2.91 1.93 6.88 7.63 6.08
error ∼ 1% ∼ 1% < 1% ∼ 4% < 1% < 1% ∼ 1%

Note VFS is a check of the point sampling; better accuracy requires more
sampling points.
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Example: h11 = 2 Kreuzer–Skarke CY

Short KS run: train toric φ-model on 50 000 points for 30 epochs
(width 64, depth 3, GELU activation functions, batch size of 64, learning rate of
1/1000).
Point generation: about 1 hour, training: about three hours (single CPU).

MA loss and volume (exact 20)
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Conclusions and Outlook

This talk in summary:

Present development of package that can

machine learn metrics on CY manifolds (focus on 3D)...

with multiple complex and Kähler moduli ...

from both CICY and Kreuzer-Skarke CY lists

Novel features and challenges (w.r.t previous work)

multiple Kähler moduli  new procedures to control Kähler class

toric ambient space  new procedures for point sampling
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Conclusions and Outlook

Outlook
Improve ML side: architecture and hyperparameter tuning for better
performance.

Test other point sampling routines (MCMC methods?).

(Kähler) moduli dependence of metric?
e.g. cpl structure moduli on Quintic Anderson-et.al:20, Ashmore-Ruehle:21.

Solve Hermitian-Yang Mills equation (in progress).

Submanifolds and branes: calibrated/SUSY, non-calibrated/non-SUSY.

Compactifications with flux e.g. Strominger-Hull system.
just need other loss functions. Larfors-Lukas-Ruehle:18, Anderson-et.al:20.

K3 metrics, compare with analytic metric.
Kachru–Tripathy–Zimet:18,20; Jejjala-et.al:20

What about other special holonomy manifolds?
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Conclusions and Outlook

Results
Machine learning provides computationally efficient approximations to CY
metrics.

The package cymetric provides the functionalities needed for any CY (in
principle).

It’s time to use it for physics!

Thank you for listening!
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