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♦♦♦

In quantum field theory and statistical mechanics
one often uses the trick of analytic continuation from Z to C

♦ ♦ ♦
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In quantum field theory and statistical mechanics
one often uses the trick of analytic continuation from Z to C

Particles as S-matrix poles in complex angular momentum l
T .Regge

Replica trick: 〈logZ 〉 → 〈Zn〉
G .Parisi

Dimensional regularization: spacetime dimension D
G .′tHooft

♦ ♦ ♦



♦♦♦

Is there any physical meaning to these complexifications?

What physical system realizes complex spin representations of slN?

Which physical system’s partition function is equal to Zn for complex n?

In string paradigm the number of species is the spacetime dimension

D ∼ c , the central charge of the matter sector of the worldsheet theory

What is the physical realization of Virasoro representations with complex c?

♦ ♦ ♦



♦♦♦

Is there any physical meaning to these complexifications?

We shall argue the answer is in extra dimensions and supersymmetry!

♦ ♦ ♦



♦♦♦
Let us start with the simple representation theory

of sl2 algebra

L+ = x2∂x − 2sx , L0 = x∂x − s , L− = ∂x

Realized in ψ(x)dx−s tensors in one dimension.

For 2s ∈ Z+ there is a finite dimensional SL(2,C) group representation

ψ(x) = f0 + f1x + . . .+ f2sx
2s

ψ(x)dx−s 7→ f

(
ax + b

cx + d

)
(cx + d)2sdx−s

♦ ♦ ♦



♦♦♦
For 2s ∈ Z+ there is a finite dimensional SL(2,C) group representation

ψ(x) = ψ0 + ψ1x + . . .+ ψ2sx
2s

The space of states of a quantum mechanics of a particle on a sphere S2

Geometric quantization,Kirillov−Kostant−Souriau∫
DpDq e i

∫
pq̇

dp ∧ dq = is
dx ∧ dx̄

(1 + xx̄)2

The symmetry of quantum mechanics is SU(2)
The wavefunction ψ(x) is a globally defined holomorphic section of O(2s)

♦ ♦ ♦



♦♦♦

Once s ∈ C the group action is lost
There are various options for the nature of the ψ(x) functions

Verma modules V+
s : ψ(x) = a polynomial in x

Verma modules V−s : ψ(x) = x2s · a polynomial in x−1

Heisenberg-Weyl modules HWa
s : ψ(x) = x s+a· a polynomial in x , x−1

No hermitian invariant product
Only the Lie algebra sl2 acts

♦ ♦ ♦



♦♦♦

We encounter these representations when we think about invariants

Is1,s2,s3 = (x1 − x2)s1+s2−s3(x2 − x3)s2+s3−s1(x1 − x3)s1+s3−s2

Is invariant under L
(1)
n + L

(2)
n + L

(3)
n

Expand Is1,s2,s3 in the region

|x1| � |x2| � |x3|

to see Is1,s2,s3 ∈ V+
s1
⊗HWs1−s3

s2
⊗ V−s3

♦ ♦ ♦



♦♦♦
Moving ahead, the next stop is the Knizhnik-Zamolodchikov equation

Ψ = Is0,s1,...,sn+1 ∈
(
V+

s0
⊗HWa1

s1
⊗HWa2

s2
⊗ . . .⊗ V−sn+1

)sl2
depending on additional parameters z0, z1, . . . , zn+1 ∈ CP1

obeying a system of compatible(!) equations

∇i Ψ ≡ (k + 2)
∂

∂zi
Ψ + Ĥi Ψ = 0

with z-dependent Gaudin Hamiltonians

Ĥi =
∑
j 6=i

1

zi − zj

(
x2

ij

∂2

∂xi∂xj
− 2xij

(
si
∂

∂xj
− sj

∂

∂xi

)
− 2si sj

)

♦ ♦ ♦



♦♦♦

For 2si ∈ Z+ one can restrict Ψ to be polynomials in xi of degree 2si

For k ∈ Z+ finite dimensional space of solutions

conformal blocks of SU(2)k Wess-Zumino-Novikov-Witten theory

(k + 2)
∂

∂zi
Ψ + Ĥi Ψ = 0

with z-dependent Gaudin Hamiltonians

Ĥi =
∑
j 6=i

1

zi − zj

(
L

(i)
+ L

(j)
− + L

(j)
+ L

(i)
− − 2L

(i)
0 L

(j)
0

)

♦ ♦ ♦



♦♦♦

Mathematicians and physicists have studied these equations for generic k ∈ C
Feigin−Frenkel ,Reshetikhin,Babujian−Flume,Varchenko−Schekhtman...

conformal blocks of level k ŝl2 current algebra

What is the physics? For complex si ’s and k ’s?

♦ ♦ ♦



♦♦♦
Another story: Generalization of Dyson-Macdonald identities

η(q)−dim(G) =
∑
λ

τλq
|λ|

to

Picture of arms and legs by Ugo Bruzzo

η(q)
(m+ε1)(m+ε2)

ε1ε2 =

=
∑
λ

∏
�∈λ

(m + ε1(a� + 1)− ε2l�)(m − ε1a� + ε2(l� + 1))

(ε1(a� + 1)− ε2l�)(−ε1a� + ε2(l� + 1))
q|λ|

♦ ♦ ♦
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Generalization of Dyson-Macdonald identities

to

Picture of arms and legs by Ugo Bruzzo

η(q)
(m+ε1)(m+ε2)

ε1ε2 =

=
∑
λ

∏
�∈λ

(m + ε1(a� + 1)− ε2l�)(m − ε1a� + ε2(l� + 1))

(ε1(a� + 1)− ε2l�)(−ε1a� + ε2(l� + 1))
q|λ|

♦ ♦ ♦
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♦♦♦

Armed with the previous example
Let us study four dimensional super-Yang-Mills theory

S = − 1

4g2
ym

∫
M4

tr

{
FA ∧ ?FA + DAσ ∧ ?DAσ̄ + [σ, σ̄]2

}

+
iϑ

8π2
trFA ∧ FA+

+ matter fields and fermions

its string/M theory realizations,

and connections to quantum theories in lower dimensions
♦ ♦ ♦



♦♦♦

Super-Yang-Mills subject to Ω-deformation

Sε1,ε2 =

− 1

4g2
ym

∫
M4

tr

{
FA∧?FA+(DAσ + ιVFA)∧? (DAσ̄ + ιV̄FA)

}

+
iϑ

8π2
trFA ∧ FA+

+ tr ([σ, σ̄] + . . .)2 + matter fields and fermions

V = ε1∂ϕ1 + ε2∂ϕ2 , V̄ = ε̄1∂ϕ1 + ε̄2∂ϕ2

♦ ♦ ♦



♦♦♦

Super-Yang-Mills with fundamental matter
subject to Ω-deformation

ds2 = ds2
D2

1
+ ds2

D2
2

ds2
D2

i
= fi (ri )

(
dr2

i + r2
i dϕ

2
i

)
i = 1, 2

V = ε1∂ϕ1 + ε2∂ϕ2

V̄ = ε̄1∂ϕ1 + ε̄2∂ϕ2

♦ ♦ ♦



♦♦♦

First of all, we can compute exactly quite a few things

♦ ♦ ♦



♦♦♦

We can compute its super-partition function

Z (a,m, ε1, ε2; q)

=

∫
gauge fields + matter+ superpartners

DADψDσDσ̄DχDη e−Sε1,ε2

where we fix the asymptotics σ(x)→ diag (a1, . . . , aN) as x →∞

♦ ♦ ♦



♦♦♦
We can compute its super-partition function

using localization and other clever tricks

Z (a,m, ε1, ε2; q)

♦ ♦ ♦



♦♦♦
We can compute its super-partition function

using localization and other clever tricks

Z (a,m, ε1, ε2; q)

a = (a1, . . . , aN) , m =
(
m±1 , . . . ,m

±
N

)
, q = e2πiτ , τ =

ϑ

2π
+

4πi

g2
ym

♦ ♦ ♦



We can compute its super-partition function
using localization and other clever tricks

Z (a,m, ε1, ε2; q) = Zpert (a,m, ε1, ε2; q)Zinst (a,m, ε1, ε2; q)



Zinst (a,m, ε1, ε2; q) =
∑

λ(1),...,λ(N)

N∏
α=1

q|λ
(α)|×

×
N∏

α,β=1

∏
(i ,j)∈λ(α)

(
aα −m+

β + ci ,j

)(
m−β − aα − ci ,j

)
∏

(i ,j)∈λ(α)

∏
(i ′,j ′)∈λ(β)

(
aα − aβ + di ,j ;i ′,j ′

)
a = (a1, . . . , aN)
m =

(
m±1 , . . . ,m

±
N

)
q = e2πiτ

τ = ϑ
2π + 4πi

g2
ym

Coulomb moduli
Masses of fundamental hypers

Instanton fugacity
Complexified gauge coupling

ci ,j = ε1(i − 1) + ε2(j − 1)



Zinst (a,m, ε1, ε2; q) =
∑

λ(1),...,λ(N)

N∏
α=1

q|λ
(α)|×

×
N∏

α,β=1

∏
(i ,j)∈λ(α)

(
aα −m+

β + ci ,j

)(
m−β − aα − ci ,j

)
∏

(i ,j)∈λ(α)

∏
(i ′,j ′)∈λ(β)

(
aα − aβ + di ,j ;i ′,j ′

)
a = (a1, . . . , aN)
m =

(
m±1 , . . . ,m

±
N

)
q = e2πiτ

τ = ϑ
2π + 4πi

g2
ym

Coulomb moduli
Masses of fundamental hypers

Instanton fugacity
Complexified gauge coupling

ci ,j = ε1(i − 1) + ε2(j − 1)



In the classical limit ε1, ε2 → 0

Z (a,m, ε1, ε2; q) = exp
1

ε1ε2
F (a,m; q)

with the special geometry of an algebraic integrable system emerging

genus zero SL(N) Hitchin system = classical Gaudin



Prepotential F (a,m; q) of classical Gaudin:

Φ(ξ) =
∑

I

ΦI

ξ − ξI
=

Φ0

ξ
+

Φq

ξ − q
+

Φ1

ξ − 1

Spectral curve Cu: Det (Φ(ξ)− η · 1N) = 0

ai =

∮
Ai

ηdξ ,
∂F

∂ai
=

∮
B i

ηdξ



Prepotential F (a,m; q) of classical Gaudin:

Spectral curve Cu: Det
(∑

I
ΦI
ξ−ξI
− η · 1N

)
= 0

Φ0 + Φq + Φ1 + Φ∞ = 0

Φ0 ∼ diag
(
m+

1 −m+, . . . ,m+
N −m+

)
,

Φq ∼ diag (m+, . . . ,m+,m+(1− N))
Φ1 ∼ diag (m−, . . . ,m−,m−(1− N)),
Φ∞ ∼ diag

(
m−1 −m−, . . . ,m−N −m−

)
Nm+ = m+

1 + . . .+ m+
N ,

Nm− = m−1 + . . .+ m−N

ai =

∮
Ai

ηdξ ,
∂F

∂ai
=

∮
B i

ηdξ



♦ ♦ ♦

For finite ε2 → 0, ε1 = ~ finite

Z (a,m, ε1, ε2; q) = exp
1

ε2
W̃ (a,m, ~; q)

With W̃ describing the monodromy data of a family of PGL(N)-opers

♦ ♦ ♦



♦ ♦ ♦
Quantum version of isomonodromic deformation

N. Reshetikhin′91

Knizhnik-Zamolodchikov/quantum differential equation
Two dimensional version of instanton partition function Givental ′94

κ
∂Ψ

∂zi
= Ĥi ·Ψ

Two quasiclassical limits

• κ→ 0, Ψ = e
W̃
κ · χ

Ĥiχ = Eiχ , Ei =
∂W̃

∂zi

♦ ♦ ♦



♦ ♦ ♦

Quantum version of isomonodromic deformation

Knizhnik-Zamolodchikov/quantum differential equation

κ
∂Ψ

∂t i
= Ĥi ·Ψ

Two quasiclassical limits

• κ→∞, Ψ = eκS · χ̃

∂S

∂zi
= Hi

(
∂S

∂x
, x; z

)

up to little symplectic subtleties of keeping something fixed
♦ ♦ ♦



♦ ♦ ♦
BACK TO FOUR DIMENSIONS

New tool: blowup equations
Idea: compare the theory on M4 and M̂4 its blowup

Taubes′93,Kronheimer+Mrowka′94,Fintushell+Stern′96

Losev+NN−Shatashvili ′97

Nakajima−Yoshioka′03

♦ ♦ ♦
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New tool: blowup equations



BACK TO FOUR DIMENSIONS

New tool: blowup equations

Idea: compare the theory on M4 and M̂4 its blowup



TOOL from FOUR DIMENSIONS: blowup equations

Z (a,m, ε1, ε2; q) =∑
n∈ZN−1

Z (a + ε1n,m, ε1, ε2 − ε1; q)Z (a + ε2n,m, ε1 − ε2, ε2; q)



FOUR DIMENSIONAL TOYS
Surface defects

Kronheimer+Mrowka′93−95

Losev+Moore+NN+Shatashvili ′95

NN′95,NN′04

Braverman′04

Gukov+Witten′08

Kanno+Tachikawa′11

Ψ (a,m, ε1, ε2; w, q) = Ψpert (a,m, ε1, ε2; w, q)Ψinst (a,m, ε1, ε2; w, q)

= q
a2

2ε1ε2

∏
ω

w

aω−aω+1
ε1

ω ×
∑

λ(1),...,λ(N)

∏
ω

wkω(λ)
ω qkbulk(λ)×

×

 N∏
α,β=1

∏
(i,j)∈λ(α)

(aα−m+
β

+ci,j )(m−
β
−aα−ci,j )

∏
(i,j)∈λ(α)

∏
(i′,j′)∈λ(β)

(aα−aβ+di,j ;i′,j′)

ZN

NN′17



♦ ♦ ♦
BPS/CFT correspondence

NN′04

Regular surface defect partition function

Ψ (a,m, ε1, ε2; w, q) =

Solves 4-point Knizhnik-Zamolodchikov equation
Theorem by NN+Tsymbalyuk ′17−21

B

S

m

m

 ν

0 q 1 

♾

γ

 ν

* oa.am ••

;←••

♦ ♦ ♦



BPS/CFT correspondence
NN′04

Regular surface defect partition function

Ψ (a,m, ε1, ε2; w, q) =

Solves 4-point Knizhnik-Zamolodchikov equation
with Ψ ∈ (V+ ⊗HW⊗HW⊗ V−)

slN

Theorem by NN+Tsymbalyuk ′17−21

B

S

m

m

 ν

0 q 1 

♾

γ

 ν

* oa.am ••

;←••

Corollary:
ε1 → 0 isomonodromic τ−function

Ψ ∼ e
logτ
ε1

For n=4, N=2 it is PVI

Using BPZ equations observed earlier by

Teschner ′15

Litvinov+Lukyanov+NN+Zamolodchikov ′16



Regular surface defect in N = 2 vs surface junction in N = 4

Ψ (a,m, ε1, ε2; w, q) ∈
(
V+ ⊗HW⊗HW⊗ V−

)slN
Solves 4-point Knizhnik-Zamolodchikov equation

B

S

m

m

 ν

0 q 1 

♾

γ

 ν

Surface
defects
in

W=y
§ 0Baa%theory:onStup to Q-exact

3

terms ≈

Cs Px ≈ B
' cannot

be defined
but electric charges in

- dim reps V±
,
NW . .

. as Wilson lines !

Surface ops !



♦ ♦ ♦
Intersecting regular and folded surface defect partition function

Ψ̂ (a,m, ε1, ε2; w, q) ∈ CN

Solves 5-point Knizhnik-Zamolodchikov equation

regular surface defect brane 

moduli space of 
flat G -connections

Hom( π (S \ 4 pts)       G ) 
B

rank N 
cc brane

σ-model 
on Hitchin moduli space

|z|

|z|

φ ,φ

Υ

super-Yang-Mills perspective (using 6d theory)

regular surface defect

vortex string defect

super-Yang-Mills perspective

A- 4

i

e

J
y

2

g

Adg

t 2

: N=2

≈ •

Mixed complex spins and finite dimensional reps
♦ ♦ ♦



♦ ♦ ♦
Parallel regular and folded surface defect partition function

Ψ̃ (a,m, ε1, ε2; w, q)

Solves 5-point Knizhnik-Zamolodchikov equation
In progress by Jeong+Lee+NN′21

(12+2) d-dz.lt

xifdxida-2xio.si?-Sodxi#izfi-to--k-z
µ twisted Vacuum module

field w=1

Xo Suk Sil Sa Xu

(E) V#An Ulta)
(1-+2)%4 + 0%(7%4)=0 %

§
.

=

rxiooxi - ZKIOSI
◦

if dd¥ ¥2400m.

-

siy
Zo - Zi -

5 Zi

i≠o

[56,1%1=0

long stringsJon = Jon + Kiran
,o

JÉ = T¥±w
in Ads,



The power of four dimensions: Blown up Surface defects



The power of four dimensions: Blown up Surface defects

Ψ (a,m, ε1, ε2; w, q) =∑
n∈ZN−1

Z (a + ε2n,m, ε1 − ε2, ε2; q) Ψ (a + ε1n,m, ε1, ε2 − ε1; w, q)



♦ ♦ ♦

Limit ε1 → 0: higher rank analogue of GIL “Kyiv” formula

N = 2, n = 4 case: Gamayun−Iorgov−Lysovyy ′12

Schematically , τPVI
~ν (a, b; q) =

∑
n∈Z

enbZ~ν(a + n; q)c=1

♦ ♦ ♦



♦ ♦ ♦

BPS/CFT correspondence

Z-partition function = WN -conformal block
Alday+Gaiotto+Tachikawa′09,Wyllard ′09

For N = 2: Virasoro with

c = 1 + 6Q2 , Q2 =
(ε1 + ε2)2

ε1ε2

♦ ♦ ♦



♦ ♦ ♦

BPS/CFT correspondence

The Spin(4)→ SU(2) reduction ε1 + ε2 = 0

corresponds to c = 1 conformal blocks

For ε1 + ε2 = 0, Z is expressed in terms of free fermions ψ, ψ̃
NN+Okounkov ′03

♦ ♦ ♦



♦ ♦ ♦

BPS/CFT correspondence

The R4 → R2 reduction ε1 → 0

corresponds to c →∞, i.e. classical conformal blocks
A. and Al .Zamolodchikov , late eighties

♦ ♦ ♦



♦ ♦ ♦

Thus, using the four dimensional side
of the BPS/CFT correspondence

We managed to establish the c = 1/c =∞ duality

≈ fermion/boson dualuty in two dimensions

This is one of the few almost proven dualities,

which might someday help establish

The existence of a 4 + 2-dimensional superconformal field theory

♦ ♦ ♦



♦ ♦ ♦

BEYOND Lie algebra symmetries..

From sums over partitions

To higher dimensional suprises to come....

♦ ♦ ♦


