Complex spins in BPS/CFT,

 or:Do replican s dream of electric sheaf?
Some remarks on symmetries of quantum field theory

NIKITA NEKRASOV

29 April 2022

In quantum field theory and statistical mechanics one often uses the trick of analytic continuation from \mathbb{Z} to \mathbb{C}

In quantum field theory and statistical mechanics one often uses the trick of analytic continuation from \mathbb{Z} to \mathbb{C}

Particles as S-matrix poles in complex angular momentum /
T.Regge

Replica trick: $\langle\log Z\rangle \rightarrow\left\langle Z^{n}\right\rangle$
G.Parisi

Dimensional regularization: spacetime dimension D
G.'tHooft

Is there any physical meaning to these complexifications?

What physical system realizes complex spin representations of $\mathfrak{s l}_{N}$?
Which physical system's partition function is equal to Z^{n} for complex n ?
In string paradigm the number of species is the spacetime dimension
$D \sim c$, the central charge of the matter sector of the worldsheet theory
What is the physical realization of Virasoro representations with complex c ?

Is there any physical meaning to these complexifications?

We shall argue the answer is in extra dimensions and supersymmetry!

Let us start with the simple representation theory

$$
\begin{gathered}
\text { of } \mathfrak{s l}_{2} \text { algebra } \\
L_{+}=x^{2} \partial_{x}-2 s x, L_{0}=x \partial_{x}-s, L_{-}=\partial_{x}
\end{gathered}
$$

Realized in $\psi(x) d x^{-s}$ tensors in one dimension.
For $2 s \in \mathbb{Z}_{+}$there is a finite dimensional $S L(2, \mathbb{C})$ group representation

$$
\begin{gathered}
\psi(x)=f_{0}+f_{1} x+\ldots+f_{2 s} x^{2 s} \\
\psi(x) d x^{-s} \mapsto f\left(\frac{a x+b}{c x+d}\right)(c x+d)^{2 s} d x^{-s}
\end{gathered}
$$

For $2 s \in \mathbb{Z}_{+}$there is a finite dimensional $S L(2, \mathbb{C})$ group representation

$$
\psi(x)=\psi_{0}+\psi_{1} x+\ldots+\psi_{2 s} x^{2 s}
$$

The space of states of a quantum mechanics of a particle on a sphere S^{2}
Geometric quantization,Kirillov-Kostant-Souriau

$$
\begin{gathered}
\int D p D q e^{\mathrm{i} \int p \dot{q}} \\
d p \wedge d q=\text { is } \frac{d x \wedge d \bar{x}}{(1+x \bar{x})^{2}}
\end{gathered}
$$

The symmetry of quantum mechanics is $S U(2)$
The wavefunction $\psi(x)$ is a globally defined holomorphic section of $\mathcal{O}(2 s)$

Once $s \in \mathbb{C}$ the group action is lost

There are various options for the nature of the $\psi(x)$ functions
Verma modules $\mathcal{V}_{s}^{+}: \psi(x)=$ a polynomial in x Verma modules $V_{s}^{-}: \psi(x)=x^{2 s}$. a polynomial in x^{-1} Heisenberg-Weyl modules $\mathcal{H} \mathcal{W}_{s}^{a}: \psi(x)=x^{s+a}$. a polynomial in x, x^{-1}

No hermitian invariant product Only the Lie algebra $\mathfrak{s l}_{2}$ acts

We encounter these representations when we think about invariants

$$
\mathcal{J}^{s_{1}, s_{2}, s_{3}}=\left(x_{1}-x_{2}\right)^{s_{1}+s_{2}-s_{3}}\left(x_{2}-x_{3}\right)^{s_{2}+s_{3}-s_{1}}\left(x_{1}-x_{3}\right)^{s_{1}+s_{3}-s_{2}}
$$

$$
\text { Is invariant under } L_{n}^{(1)}+L_{n}^{(2)}+L_{n}^{(3)}
$$

Expand $J^{S_{1}, s_{2}, \varsigma_{3}}$ in the region

$$
\begin{gathered}
\left|x_{1}\right| \ll\left|x_{2}\right| \ll\left|x_{3}\right| \\
\text { to see } \mathcal{J}_{1}^{s_{1}, s_{2}, s_{3}} \in \mathcal{V}_{s_{1}}^{+} \otimes \mathcal{H}_{\mathcal{S}_{2}}^{s_{1}-s_{3}} \otimes \mathcal{V}_{s_{3}}^{-}
\end{gathered}
$$

Moving ahead, the next stop is the Knizhnik-Zamolodchikov equation

$$
\boldsymbol{\Psi}=\mathcal{J}^{s_{0}, s_{1}, \ldots, s_{n+1}} \in\left(\mathcal{V}_{s_{0}}^{+} \otimes \mathcal{H W}_{s_{1}}^{a_{1}} \otimes \mathcal{H W}_{s_{2}}^{a_{2}} \otimes \ldots \otimes \mathcal{V}_{s_{n+1}}^{-}\right)^{\mathfrak{s l}_{2}}
$$

depending on additional parameters $z_{0}, z_{1}, \ldots, z_{n+1} \in \mathbb{C P}^{1}$ obeying a system of compatible(!) equations

$$
\nabla_{i} \boldsymbol{\Psi} \equiv(k+2) \frac{\partial}{\partial z_{i}} \boldsymbol{\Psi}+\widehat{H}_{i} \boldsymbol{\Psi}=0
$$

with z-dependent Gaudin Hamiltonians

$$
\widehat{H}_{i}=\sum_{j \neq i} \frac{1}{z_{i}-z_{j}}\left(x_{i j}^{2} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}-2 x_{i j}\left(s_{i} \frac{\partial}{\partial x_{j}}-s_{j} \frac{\partial}{\partial x_{i}}\right)-2 s_{i} s_{j}\right)
$$

For $2 s_{i} \in \mathbb{Z}_{+}$one can restrict $\boldsymbol{\Psi}$ to be polynomials in x_{i} of degree $2 s_{i}$ For $k \in \mathbb{Z}_{+}$finite dimensional space of solutions conformal blocks of $S U(2)_{k}$ Wess-Zumino-Novikov-Witten theory

$$
(k+2) \frac{\partial}{\partial z_{i}} \boldsymbol{\Psi}+\widehat{H}_{i} \boldsymbol{\Psi}=0
$$

with z-dependent Gaudin Hamiltonians

$$
\widehat{H}_{i}=\sum_{j \neq i} \frac{1}{z_{i}-z_{j}}\left(L_{+}^{(i)} L_{-}^{(j)}+L_{+}^{(j)} L_{-}^{(i)}-2 L_{0}^{(i)} L_{0}^{(j)}\right)
$$

Mathematicians and physicists have studied these equations for generic $k \in \mathbb{C}$ Feigin-Frenkel,Reshetikhin,Babujian-Flume, Varchenko-Schekhtman... conformal blocks of level $k \widehat{\mathfrak{s l}_{2}}$ current algebra

What is the physics? For complex s_{i} 's and k 's?

Another story: Generalization of Dyson-Macdonald identities

$$
\eta(\mathfrak{q})^{-\operatorname{dim}(G)}=\sum_{\lambda} \tau_{\lambda} \mathfrak{q}^{|\lambda|}
$$

to

Picture of arms and legs by Ugo Bruzzo

$$
\begin{gathered}
\eta(\mathfrak{q})^{\frac{\left(m+\varepsilon_{1}\right)\left(m+\varepsilon_{2}\right)}{\varepsilon_{1} \varepsilon_{2}}}= \\
=\sum_{\lambda} \prod_{\square \in \lambda} \frac{\left(m+\varepsilon_{1}\left(a_{\square}+1\right)-\varepsilon_{2} \sqcap\right)\left(m-\varepsilon_{1} a_{\square}+\varepsilon_{2}(\not \square+1)\right)}{\left(\varepsilon_{1}(a \square+1)-\varepsilon_{2} \square\right)\left(-\varepsilon_{1} a \square+\varepsilon_{2}(\square+1)\right)} \mathfrak{q}^{|\lambda|}
\end{gathered}
$$

Generalization of Dyson-Macdonald identities

to

Picture of arms and legs by Ugo Bruzzo

$$
\begin{gathered}
\eta(\mathfrak{q})^{\frac{\left(m+\varepsilon_{1}\right)\left(m+\varepsilon_{2}\right)}{\varepsilon_{1} \varepsilon_{2}}}= \\
=\sum_{\lambda} \prod_{\square \in \lambda} \frac{\left(m+\varepsilon_{1}(a \square+1)-\varepsilon_{2} \not \square\right)\left(m-\varepsilon_{1} a \square+\varepsilon_{2}(\square+1)\right)}{\left(\varepsilon_{1}(a \square+1)-\varepsilon_{2} l_{\square}\right)\left(-\varepsilon_{1} a_{\square}+\varepsilon_{2}(\square+1)\right)} \mathfrak{q}^{|\lambda|}
\end{gathered}
$$

SUPERSYMMETRIES AND REPLICAS

is there a physical realization of the replica trick? could one refine it? since the replica symmetry is often broken, could one introduce some chemical potentials for different $S(n)$ representations?

SUPERSYMMETRIES AND REPLICAS

$$
\frac{1}{\eta(q)^{\lambda}}=\sum_{\sum_{\rho}} q^{|\rho|} \times \mu_{\rho}(\lambda)
$$

For $\lambda \in \mathbb{Z} \quad|\lambda|$ chiral bosens/fermions

$$
\lambda=\frac{\left(m+\varepsilon_{1}\right)\left(m+\varepsilon_{2}\right)}{\varepsilon_{1} \varepsilon_{2}} \quad \begin{gathered}
\text { flavor } \\
\sum_{\text {space time rotations }}^{\text {can } 6 e} \text { (ration function of } / 6 d \text { fed tor } \\
\text { theory } \\
(2,0)
\end{gathered}
$$

SUPERSYMMETRIES AND REPLICAS
For theories with $O(n)$ or $U(n)$ symmetry one can use Deligne category to define "representations"

$$
\frac{1}{\eta(q)^{\lambda}}=\sum_{\sum_{\rho}} q^{|\rho|} \times \mu_{\rho}(\lambda)
$$

for complex n... (Binder-Rychkov'2016)

For Chern-Simons theory with a simple Lie gauge group one can use Vogel plane to define universal CS theory (Mkrtchyan-Veselov'2012)

For $\lambda \in \mathbb{Z} \quad|\lambda|$ chiral bosens/fermious

SUPERSYMMETRIES AND REPLICAS

The refined replica of 2d chiral bosons/fermions $=6 d(2,0)$ tensor multiplet
Q: Refined replica of 2d chiral WZW ADE theory = nonabelian 6d $(2,0)$ SCFT theory?

SUPERSYMMETRIES AND REPLICAS

$$
\begin{aligned}
& \frac{1}{\eta(q)^{\lambda}}=\sum_{\|_{\rho}} q^{|g|} \times \mu_{\rho}(\lambda) \\
& \text { For } \lambda \in \mathbb{Z} \quad|\lambda| \text { chiral bosoms/fermions }
\end{aligned}
$$

The refined replica of 2 d chiral bosons/fermions $=6 \mathrm{~d}(2,0)$ tensor multiplet
Q: Refined replica of 2d chiral WZW ADE theory = nonabelian 6d $(2,0)$ SCFT theory?
The refined replica of 3d conformally coupled scalar = 11d linearized supergravity
(NN conjecture 2004, A.Qkounkey proof 2015)
Q: what is the "non-abelian" 3d theory whose replicant is M-theory?

Armed with the previous example Let us study four dimensional super-Yang-Mills theory

$$
\begin{gathered}
\mathcal{S}=-\frac{1}{4 g_{\mathrm{ym}}^{2}} \int_{M^{4}} \operatorname{tr}\left\{F_{A} \wedge \star F_{A}+D_{A} \sigma \wedge \star D_{A} \bar{\sigma}+[\sigma, \bar{\sigma}]^{2}\right\} \\
+\frac{\mathrm{i} \vartheta}{8 \pi^{2}} \operatorname{tr} F_{A} \wedge F_{A}+ \\
\quad+\text { matter fields and fermions }
\end{gathered}
$$

its string/ M theory realizations, and connections to quantum theories in lower dimensions

Super-Yang-Mills subject to Ω-deformation

$$
\begin{aligned}
& \mathcal{S}_{\varepsilon_{1}, \varepsilon_{2}}= \\
& -\frac{1}{4 g_{\mathrm{ym}}^{2}} \int_{M^{4}} \operatorname{tr}\left\{F_{A} \wedge \star F_{A}+\left(D_{A} \sigma+\iota_{V} F_{A}\right) \wedge \star\left(D_{A} \bar{\sigma}+\iota_{\bar{V}} F_{A}\right)\right\} \\
& +\frac{\mathrm{i} \vartheta}{8 \pi^{2}} \operatorname{tr} F_{A} \wedge F_{A}+ \\
& +\operatorname{tr}([\sigma, \bar{\sigma}]+\ldots)^{2}+\text { matter fields and fermions } \\
& V=\varepsilon_{1} \partial_{\varphi_{1}}+\varepsilon_{2} \partial_{\varphi_{2}}, \bar{V}=\bar{\varepsilon}_{1} \partial_{\varphi_{1}}+\bar{\varepsilon}_{2} \partial_{\varphi_{2}}
\end{aligned}
$$

Super-Yang-Mills with fundamental matter subject to Ω-deformation

$$
\begin{gathered}
d s^{2}=d s_{D_{1}^{2}}^{2}+d s_{D_{2}^{2}}^{2} \\
d s_{D_{i}^{2}}^{2}=f_{i}\left(r_{i}\right)\left(d r_{i}^{2}+r_{i}^{2} d \varphi_{i}^{2}\right) \\
i=1,2 \\
V=\varepsilon_{1} \partial_{\varphi_{1}}+\varepsilon_{2} \partial_{\varphi_{2}} \\
\bar{V}=\bar{\varepsilon}_{1} \partial_{\varphi_{1}}+\bar{\varepsilon}_{2} \partial_{\varphi_{2}}
\end{gathered}
$$

First of all, we can compute exactly quite a few things

$\diamond \Delta \diamond$

We can compute its super-partition function

$$
\mathcal{Z}\left(\mathbf{a}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2} ; \mathfrak{q}\right)
$$

$=\int_{\text {gauge fields }+ \text { matter }+ \text { superpartners }} D A D \psi D \sigma D \bar{\sigma} D \chi D \eta e^{-\delta_{\varepsilon_{1}, \varepsilon_{2}}}$
where we fix the asymptotics $\sigma(x) \rightarrow \operatorname{diag}\left(a_{1}, \ldots, a_{N}\right)$ as $x \rightarrow \infty$

We can compute its super-partition function using localization and other clever tricks

$$
\mathcal{Z}\left(\mathbf{a}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2} ; \mathfrak{q}\right)
$$

We can compute its super-partition function

 using localization and other clever tricks$$
z\left(\mathbf{a}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2} ; \mathfrak{q}\right)
$$

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{N}\right), \mathbf{m}=\left(m_{1}^{ \pm}, \ldots, m_{N}^{ \pm}\right), \mathfrak{q}=e^{2 \pi \mathrm{i} \tau}, \tau=\frac{\vartheta}{2 \pi}+\frac{4 \pi \mathrm{i}}{g_{\mathrm{ym}}^{2}}
$$

We can compute its super-partition function using localization and other clever tricks

$$
z\left(\mathbf{a}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2} ; \mathfrak{q}\right)=z^{\text {pert }}\left(\mathbf{a}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2} ; \mathfrak{q}\right) z^{\text {inst }}\left(\mathbf{a}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2} ; \mathfrak{q}\right)
$$

$$
\begin{aligned}
& z^{\text {inst }}\left(\mathbf{a}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2} ; \mathfrak{q}\right)=\sum_{\lambda^{(1)}, \ldots, \lambda^{(N)}} \prod_{\alpha=1}^{N} \mathfrak{q}^{\left|\lambda^{(\alpha)}\right|} \times \\
& \times \prod_{\alpha, \beta=1}^{N} \frac{\prod_{(i, j) \in \lambda^{(\alpha)}}\left(a_{\alpha}-m_{\beta}^{+}+c_{i, j}\right)\left(m_{\beta}^{-}-a_{\alpha}-c_{i, j}\right)}{\prod_{(i, j) \in \lambda^{(\alpha)}} \prod_{\left(i^{\prime}, j^{\prime}\right) \in \lambda^{(\beta)}}\left(a_{\alpha}-a_{\beta}+d_{i, j ; i^{\prime}, j^{\prime}}\right)} \\
& \mathbf{a}=\left(a_{1}, \ldots, a_{N}\right) \\
& \mathbf{m}=\left(m_{1}^{ \pm}, \ldots, m_{N}^{ \pm}\right) \\
& \mathfrak{q}=e^{2 \pi \mathrm{i} \tau} \\
& \tau=\frac{\vartheta}{2 \pi}+\frac{4 \pi \mathrm{i}}{g_{y \mathrm{~m}}^{2}} \\
& \text { Coulomb moduli } \\
& \text { Masses of fundamental hypers } \\
& \text { Instanton fugacity } \\
& \text { Complexified gauge coupling } \\
& c_{i, j}=\varepsilon_{1}(i-1)+\varepsilon_{2}(j-1)
\end{aligned}
$$

$$
\begin{aligned}
& z^{\text {inst }}\left(\mathbf{a}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2} ; \mathfrak{q}\right)=\sum_{\lambda^{(1)}, \ldots, \lambda^{(N)}} \prod_{\alpha=1}^{N} \mathfrak{q}^{\left|\lambda^{(\alpha)}\right|} \times \\
& \times \prod_{\alpha, \beta=1}^{N} \frac{\prod_{(i, j) \in \lambda^{(\alpha)}}\left(a_{\alpha}-m_{\beta}^{+}+c_{i, j}\right)\left(m_{\beta}^{-}-a_{\alpha}-c_{i, j}\right)}{\prod_{(i, j) \in \lambda^{(\alpha)}} \prod_{\left(i^{\prime}, j^{\prime}\right) \in \lambda^{(\beta)}}\left(a_{\alpha}-a_{\beta}+d_{i, j ; i^{\prime}, j^{\prime}}\right)} \\
& \mathbf{a}=\left(a_{1}, \ldots, a_{N}\right) \\
& \mathbf{m}=\left(m_{1}^{ \pm}, \ldots, m_{N}^{ \pm}\right) \\
& \mathfrak{q}=e^{2 \pi \mathrm{i} \tau} \\
& \tau=\frac{\vartheta}{2 \pi}+\frac{4 \pi \mathrm{i}}{g_{y \mathrm{~m}}^{2}} \\
& \text { Coulomb moduli } \\
& \text { Masses of fundamental hypers } \\
& \text { Instanton fugacity } \\
& \text { Complexified gauge coupling } \\
& c_{i, j}=\varepsilon_{1}(i-1)+\varepsilon_{2}(j-1)
\end{aligned}
$$

$$
\begin{gathered}
\text { In the classical limit } \varepsilon_{1}, \varepsilon_{2} \rightarrow 0 \\
z\left(\mathbf{a}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2} ; \mathfrak{q}\right)=\exp \frac{1}{\varepsilon_{1} \varepsilon_{2}} \mathcal{F}(\mathbf{a}, \mathbf{m} ; \mathfrak{q})
\end{gathered}
$$

with the special geometry of an algebraic integrable system emerging
genus zero $S L(N)$ Hitchin system = classical Gaudin

Prepotential $\mathcal{F}(\mathbf{a}, \mathbf{m} ; \mathfrak{q})$ of classical Gaudin:

$$
\Phi(\xi)=\sum_{l} \frac{\Phi_{l}}{\xi-\xi_{l}}=\frac{\Phi_{0}}{\xi}+\frac{\Phi_{\mathfrak{q}}}{\xi-\mathfrak{q}}+\frac{\Phi_{1}}{\xi-1}
$$

Spectral curve $\mathcal{C}_{\mathbf{u}}: \operatorname{Det}\left(\Phi(\xi)-\eta \cdot \mathbf{1}_{N}\right)=0$

$$
a_{i}=\oint_{A_{i}} \eta d \xi, \quad \frac{\partial \mathcal{F}}{\partial a_{i}}=\oint_{B^{i}} \eta d \xi
$$

Prepotential $\mathcal{F}(\mathbf{a}, \mathbf{m} ; \mathfrak{q})$ of classical Gaudin:

Spectral curve $\mathcal{C}_{\mathbf{u}}: \operatorname{Det}\left(\sum_{I} \frac{\Phi_{I}}{\xi-\xi_{I}}-\eta \cdot \mathbf{1}_{N}\right)=0$

$$
\Phi_{0}+\Phi_{\mathfrak{q}}+\Phi_{1}+\Phi_{\infty}=0
$$

$$
\begin{aligned}
& \Phi_{0} \sim \operatorname{diag}\left(m_{1}^{+}-m^{+}, \ldots, m_{N}^{+}-m^{+}\right) \\
& \Phi_{\mathfrak{q}} \sim \operatorname{diag}\left(m^{+}, \ldots, m^{+}, m^{+}(1-N)\right) \\
& \Phi_{1} \sim \operatorname{diag}\left(m^{-}, \ldots, m^{-}, m^{-}(1-N)\right) \\
& \Phi_{\infty} \sim \operatorname{diag}\left(m_{1}^{-}-m^{-}, \ldots, m_{N}^{-}-m^{-}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Nm}^{+}=m_{1}^{+}+\ldots+m_{N}^{+} \\
& \mathrm{Nm}^{-}=m_{1}^{-}+\ldots+m_{N}^{-}
\end{aligned}
$$

$$
a_{i}=\oint_{A_{i}} \eta d \xi, \quad \frac{\partial \mathcal{F}}{\partial a_{i}}=\oint_{B^{i}} \eta d \xi
$$

For finite $\varepsilon_{2} \rightarrow 0, \varepsilon_{1}=\hbar$ finite

$$
z\left(\mathbf{a}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2} ; \mathfrak{q}\right)=\exp \frac{1}{\varepsilon_{2}} \widetilde{\mathcal{W}}(\mathbf{a}, \mathbf{m}, \hbar ; \mathfrak{q})
$$

With $\widetilde{\mathcal{W}}$ describing the monodromy data of a family of $\operatorname{PGL}(N)$-opers

Quantum version of isomonodromic deformation
N. Reshetikhin'91

Knizhnik-Zamolodchikov/quantum differential equation
Two dimensional version of instanton partition function
Givental'94

$$
\kappa \frac{\partial \boldsymbol{\Psi}}{\partial z_{i}}=\widehat{H}_{i} \cdot \boldsymbol{\Psi}
$$

Two quasiclassical limits

- $\kappa \rightarrow 0, \boldsymbol{\Psi}=e^{\frac{\tilde{W}}{\kappa}} \cdot \chi$

$$
\widehat{H}_{i} \chi=E_{i} \chi, E_{i}=\frac{\partial \tilde{W}}{\partial z_{i}}
$$

Quantum version of isomonodromic deformation
Knizhnik-Zamolodchikov/quantum differential equation

$$
\kappa \frac{\partial \boldsymbol{\Psi}}{\partial t^{i}}=\widehat{H}_{i} \cdot \boldsymbol{\Psi}
$$

Two quasiclassical limits

$$
\text { - } \kappa \rightarrow \infty, \boldsymbol{\Psi}=e^{\kappa S} \cdot \tilde{\chi}
$$

$$
\frac{\partial S}{\partial z_{i}}=H_{i}\left(\frac{\partial S}{\partial \mathbf{x}}, \mathbf{x} ; \mathbf{z}\right)
$$

up to little symplectic subtleties of keeping something fixed

BACK TO FOUR DIMENSIONS
New tool: blowup equations
Idea: compare the theory on M^{4} and \widehat{M}^{4} its blowup
Taubes'93,Kronheimer + Mrowka'94,Fintushell + Stern'96
Losev + NN - Shatashvili'97
Nakajima-Yoshioka'03

$$
\left|w_{1}\right|^{2}+\left|w_{2}\right|^{2}-|n|^{2}=r>0
$$

BACK TO FOUR DIMENSIONS
New tool: blowup equations

BACK TO FOUR DIMENSIONS

New tool: blowup equations
Idea: compare the theory on M^{4} and \widehat{M}^{4} its blowup

TOOL from FOUR DIMENSIONS: blowup equations

$$
\begin{aligned}
& Z\left(\mathbf{a}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2} ; \mathfrak{q}\right)= \\
& \sum_{\mathbf{n} \in \mathbb{Z}^{N-1}} Z\left(\mathbf{a}+\varepsilon_{1} \mathbf{n}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2}-\varepsilon_{1} ; \mathfrak{q}\right) Z\left(\mathbf{a}+\varepsilon_{2} \mathbf{n}, \mathbf{m}, \varepsilon_{1}-\varepsilon_{2}, \varepsilon_{2} ; \mathfrak{q}\right)
\end{aligned}
$$

FOUR DIMENSIONAL TOYS

Surface defects

Kronheimer + Mrowka' $93-95$
Losev+Moore+NN+Shatashvili'95
NN'95, NN'04
Braverman' 04
Gukov+Witten'08
Kanno+Tachikawa' 11

$\boldsymbol{\Psi}\left(\mathbf{a}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2} ; \mathbf{w}, \mathfrak{q}\right)=\boldsymbol{\Psi}^{\text {pert }}\left(\mathbf{a}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2} ; \mathbf{w}, \mathfrak{q}\right) \boldsymbol{\Psi}^{\text {inst }}\left(\mathbf{a}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2} ; \mathbf{w}, \mathfrak{q}\right)$

$$
\begin{aligned}
= & \mathfrak{q}^{\frac{\mathbf{a}^{2}}{2 \varepsilon_{1} \varepsilon_{2}}} \prod_{\omega} w_{\omega}^{\frac{a \omega-a_{\omega+1}}{\varepsilon_{1}}} \times \sum_{\lambda^{(1)}, \ldots, \lambda(N)} \prod_{\omega} w_{\omega}^{k_{\omega}(\lambda)} \mathfrak{q}^{k_{\mathrm{bulk}}(\lambda)} \times \\
& \times\left(\prod_{\alpha, \beta=1}^{N} \frac{\prod_{(i, j) \in \lambda(\alpha)}\left(a_{\alpha}-m_{\beta}^{+}+c_{i, j}\right)\left(m_{\beta}^{-}-a_{\alpha}-c_{i, j}\right)}{\prod_{(i, j) \in \lambda}(\alpha)} \prod_{\left(i^{\prime}, j^{\prime}\right) \in \lambda(\beta)}^{\prod_{N}\left(a_{\alpha}-a_{\beta}+d_{i, j ; i^{\prime}, j^{\prime}}\right)}\right)
\end{aligned}
$$

BPS/CFT correspondence

Regular surface defect partition function

$\boldsymbol{\Psi}\left(\mathbf{a}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2} ; \mathbf{w}, \mathfrak{q}\right)=$
Solves 4-point Knizhnik-Zamolodchikov equation
Theorem by NN+Tsymbalyuk'17-21

BPS/CFT correspondence

Regular surface defect partition function

$\boldsymbol{\Psi}\left(\mathbf{a}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2} ; \mathbf{w}, \mathfrak{q}\right)=$

> Solves 4-point Knizhnik-Zamolodchikov equation $$
\begin{array}{l}\text { with } \boldsymbol{\Psi} \in\left(\mathcal{V}^{+} \otimes \mathcal{H W} \otimes \mathcal{H W} \otimes \mathcal{V}^{-}\right)^{\text {sl }}\end{array}
$$ $$
\text { Theorem by } N N+T_{\text {symbalyuk' } 17-21}
$$

For $n=4, N=2$ it is $P V I$
Corollary:
Using BPZ equations observed earlier by
$\varepsilon_{1} \rightarrow 0 \quad$ isomonodromic τ-function Teschner' 15
$\boldsymbol{\Psi} \sim e^{\frac{\log \tau}{\varepsilon_{1}}}$
Litvinov + Lukyanov + NN + Zamolodchikovٍㅡ́́16

Regular surface defect in $\mathcal{N}=2$ vs surface junction in $\mathcal{N}=4$

$$
\boldsymbol{\Psi}\left(\mathbf{a}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2} ; \mathbf{w}, \mathfrak{q}\right) \in\left(\mathcal{V}^{+} \otimes \mathcal{H} \mathcal{W} \otimes \mathcal{H} \mathcal{W} \otimes \mathcal{V}^{-}\right)^{\mathfrak{s l}_{N}}
$$

Solves 4-point Knizhnik-Zamolodchikov equation
 but electric charges in ∞-dim reps $V^{ \pm}, N W \ldots$ as defined as lines! Surface ops!

Intersecting regular and folded surface defect partition function
$\widehat{\psi}\left(\mathbf{a}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2} ; \mathbf{w}, \mathfrak{q}\right) \in \mathbb{C}^{N}$
Solves 5-point Knizhnik-Zamolodchikov equation

$$
\mathcal{N}=4 \quad \text { super-Yang-Mills perspective lusing 6d theor y) }
$$

Mixed complex spins and finite dimensional reps

Parallel regular and folded surface defect partition function

$$
\tilde{\Psi}\left(\mathbf{a}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2} ; \mathbf{w}, \mathfrak{q}\right)
$$

Solves 5-point Knizhnik-Zamolodchikov equation
In progress by Jeong + Lee $+N N^{\prime} 21$

The power of four dimensions: Blown up Surface defects

The power of four dimensions: Blown up Surface defects

$$
\begin{aligned}
& \boldsymbol{\Psi}\left(\mathbf{a}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2} ; \mathbf{w}, \mathfrak{q}\right)= \\
& \sum_{\mathbf{n} \in \mathbb{Z}^{N-1}} \approx\left(\mathbf{a}+\varepsilon_{2} \mathbf{n}, \mathbf{m}, \varepsilon_{1}-\varepsilon_{2}, \varepsilon_{2} ; \mathfrak{q}\right) \boldsymbol{\Psi}\left(\mathbf{a}+\varepsilon_{1} \mathbf{n}, \mathbf{m}, \varepsilon_{1}, \varepsilon_{2}-\varepsilon_{1} ; \mathbf{w}, \mathfrak{q}\right)
\end{aligned}
$$

Limit $\varepsilon_{1} \rightarrow 0$: higher rank analogue of GIL "Kyiv" formula

$$
N=2, n=4 \text { case: Gamayun-Iorgov-Lysovyy'12 }
$$

Schematically, $\tau_{\vec{\nu}}^{\mathrm{PVI}}(a, b ; \mathfrak{q})=\sum_{n \in \mathbb{Z}} e^{n b} z_{\vec{\nu}}(a+n ; \mathfrak{q})^{c=1}$

BPS/CFT correspondence

Z-partition function $=W_{N}$-conformal block
Alday + Gaiotto + Tachikawa'09, Wyllard'09

$$
\begin{gathered}
\text { For } N=2: \text { Virasoro with } \\
c=1+6 Q^{2}, Q^{2}=\frac{\left(\varepsilon_{1}+\varepsilon_{2}\right)^{2}}{\varepsilon_{1} \varepsilon_{2}}
\end{gathered}
$$

BPS/CFT correspondence

The $\operatorname{Spin}(4) \rightarrow \operatorname{SU}(2)$ reduction $\varepsilon_{1}+\varepsilon_{2}=0$ corresponds to $c=1$ conformal blocks

For $\varepsilon_{1}+\varepsilon_{2}=0, Z$ is expressed in terms of free fermions $\psi, \tilde{\psi}$ NN+Okounkov'03

BPS/CFT correspondence

The $\mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ reduction $\varepsilon_{1} \rightarrow 0$
corresponds to $c \rightarrow \infty$, i.e. classical conformal blocks
A. and AI. Zamolodchikov, late eighties

Thus, using the four dimensional side of the BPS/CFT correspondence

We managed to establish the $c=1 / c=\infty$ duality
\approx fermion/boson dualuty in two dimensions
This is one of the few almost proven dualities,
which might someday help establish

The existence of a $4+2$-dimensional superconformal field theory

$\diamond \diamond \diamond$
 BEYOND Lie algebra symmetries..

From sums over partitions

To higher dimensional suprises to come....

