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In quantum field theory and statistical mechanics
one often uses the trick of analytic continuation from Z to C
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In quantum field theory and statistical mechanics
one often uses the trick of analytic continuation from Z to C

Particles as S-matrix poles in complex angular momentum /

T.Regge
Replica trick: (logZ) — (Z")
G.Parisi
Dimensional regularization: spacetime dimension D
G./tHooft
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Is there any physical meaning to these complexifications?

What physical system realizes complex spin representations of sly?
Which physical system'’s partition function is equal to Z" for complex n?
In string paradigm the number of species is the spacetime dimension
D ~ c, the central charge of the matter sector of the worldsheet theory

What is the physical realization of Virasoro representations with complex c¢?
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Is there any physical meaning to these complexifications?

We shall argue the answer is in extra dimensions and supersymmetry!
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Let us start with the simple representation theory

of sl, algebra

Ly =x%0y —2sx, Lg=x0x —s, L_ =0y

Realized in 9(x)dx~* tensors in one dimension.

For 2s € 7, there is a finite dimensional SL(2,C) group representation

w(x):ﬂ)+f1x+...+fzsx2s

ax+ b
cx +d

Y(x)dx S f < > (cx + d)*dx—°
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For 2s € 7Z, there is a finite dimensional SL(2,C) group representation

PY(x) = o + P1x + ... + Posx>*

The space of states of a quantum mechanics of a particle on a sphere 52

Geometric quantization,Kirillov— Kostant—Souriau

/Dqu et/ Pd
. dx A\ dx
dp A dq — ISW

The symmetry of quantum mechanics is SU(2)
The wavefunction 7(x) is a globally defined holomorphic section of O(2s)

NV
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Once s € C the group action is lost
There are various options for the nature of the v(x) functions
Verma modules V{: t(x) = a polynomial in x
Verma modules V;: )(x) = x?*- a polynomial in x~
Heisenberg-Weyl modules HW2: 1)(x) = x*"2. a polynomial in x, x~
No hermitian invariant product
Only the Lie algebra sl acts

1
1

CO0
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We encounter these representations when we think about invariants
51,520,853 __ s1+sy>—s: S2+53—5 s1+5s3—5:;
51'23—(X1—X2)1 2 3(X2—X3)2 3 1(X1—X3)1 3—S2

Is invariant under L%l) + L$,2) + L£,3)
Expand J°»%2%3 in the region

al < Pl < xs
to see 0% € VI @ HWZ™= @V,

GO0
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Moving ahead, the next stop is the Knizhnik-Zamolodchikov equation

W = Joshosil ¢ (VEQHWE @ HW2 ...V, )5[2

Spn+1

obeying a system of compatible(!) equations

depending on additional parameters zg, z1, ..., 2,11 € CP!

0 ~
W= (k+2)—WV+HWY=
\Y% (k+ )8z,- + 0
with z-dependent Gaudin Hamiltonians

~ 1 0? 0 0
H = 2 o 62 — 6. ) — s:s:
! ; zi — z; (X’J 0x;0x; X (S' 0x; % 8X,-> 519 )

VRV,
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For 2s; € 7Z, one can restrict W to be polynomials in x; of degree 2s;
For k € Z. finite dimensional space of solutions

conformal blocks of SU(2), Wess-Zumino-Novikov-Witten theory

o ~
k+2)—W + HW =
(k + )82,- + 0

with z-dependent Gaudin Hamiltonians

oo 1 M, 0) , ,G),; ) ()
H;—%;ZI_ZJ(L+ LD 1919 — 201
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Mathematicians and physicists have studied these equations for generic k € C
Feigin— Frenkel ,Reshetikhin,Babujian— Flume,Varchenko— Schekhtman...

conformal blocks of level k sl current algebra

For complex s;'s and k's?

VY
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Another story: Generalization of Dyson-Macdonald identities

—di A
im( an\ |

to

&

Picture of arms and legs by Ugo Bruzzo

(m+eq)(m+er)

o) ae =

Z H (m+ei(an+1) —e2ln)(m —e1a0 + e2(lo +1)) |y
Tex (e1(an + 1) — e2ln)(—e1a0 + e2(l0 + 1))

A
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Generalization of Dyson-Macdonald identities
to
@:lﬂ;
Picture of arms and legs by Ugo Bruzzo

(m+eq)(m+ep)

Tl(q) £1€2 —

Z H m + 51(ag + 1) — 52/|:|)( —¢e1an + Ez(/g + 1)) N
- O 61 an + 1) — 82/5)( €1an + EQ(/D + 1))
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SUPERSYMMETRIES AND REPLICAS

is there a physical realization of the replica trick? could one refine it?
since the replica symmetry is often broken,

could one introduce some chemical potentials for different S(n) representations?




SUPERSYMMETRIES AND REPLICAS

c,hini bogens /.]:{rmio\ﬂs
{lavor
(m+£) (mre.)
g ¢

JSpace fime rofations




SUPERSYMMETRIES AND REPLICAS

For theories with O(n) or U(n)

symmetry one can use Deligne,
category to define “representations”

for complex n... (Binder-Rychkov'2016)

Z q )‘ /Mf ( ) For Chern-Simons theory with
(q) a simple Lie gauge group
one can use Vogel plane to define

_f universal CS theory (Mkrtchyan-Veselov'2012)

Ffr NEZ chired  bosens /‘fgtmio%
féwcf
Q’"+ L\ (Wr € ") Parh“-[m. l'u'\c‘?{m 5!’ /Gd fa'gr
£ ¢ Theoty
Gd Jauge theory (2,9
J=2

JSpace time rofations




SUPERSYMMETRIES AND REPLICAS

chird Bosens [fermins

Puchibon furchon of J6d ferse

. L thaoey

Yo goe trog
=2

speicTme otuton,

The refined replica of 2d chiral bosons/fermions = 6d (2,0) tensor multiplet.

Q: Refined replica of 2d chiral WZW ADE theory = nonabelian 6d (2,0) SCFT theory?




SUPERSYMMETRIES AND REPLICAS

The refined replica of 2d chiral bosons/fermions = 6d (2,0) tensor multiplet.
Q: Refined replica of 2d chiral WZW ADE theory = nonabelian 6d (2,0) SCFT theory?

The refined replica of 3d conformally coupled scalar = 11d linearized supergravity

(NN conjecture 2004, A Qkounkgy proof 2015)

Q: what is the ““non-abelian’’ 3d theory whose replicant is M-theory?
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Armed with the previous example
Let us study four dimensional super-Yang-Mills theory

1
S = — 5 / tr FA/\*FA+DAO/\*DA5+[(I,(_I]2
4gym M4
i
+787T2trFA A Fa+

~+ matter fields and fermions

its string/M theory realizations,

and connections to quantum theories in lower dimensions

VY
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Super-Yang-Mills subject to 2-deformation

881,52 =

1
482,

/ tr{FA/\*FAJr(DAO‘ + L\/FA)/\*(DAﬁ' + L\‘/FA)}
M4
i
+787T2 trFa A Fa+

+ tr ([U, O_'] +.. .)2 ~+ matter fields and fermions

vV = 618@1—#628@2, vV = 6_18%—!-523@2

GO0
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Super-Yang-Mills with fundamental matter
subject to (2-deformation

ds® = ds2, + ds?
D3 D3

d522 — ﬁ(r,) (dr2 + erQP ./zlf/,(f/wry VON) with /Nfu damental Iv//«r;
D i i

i

2

i=1,2 P.

1

\_/ = 518¢1+528¢2 x
vV = 516%4-526@

GO0
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First of all, we can compute exactly quite a few things

VY
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We can compute its super-partition function

Z (a,m,e1,e2;q)

= / DADvDo DG Dy Dn e Se1e
gauge fields + matter+ superpartners

where we fix the asymptotics o(x) — diag (a1, ..., ay) as x — oo

GO0
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We can compute its super-partition function
using localization and other clever tricks

Z(a,m,e1,e2;9)

A type ﬂlem“y: L0/6 M with %N funJﬁ'hgenfa(/ ﬁyper;g

Q- bacquound
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We can compute its super-partition function
using localization and other clever tricks
Z(a,m,51,62; q)

fy,ae ﬂtemy UN) with ?’Nfuno?amenfa /Iy/.)t’l’é

2

D. i

1

X

@ _D-background

8¢m



We can compute its super-partition function
using localization and other clever tricks

Z(a,m,e1,62;q) = 2P (a,m,e1,e0;9)2™ (a,m, e1, 60 q)



a=1

N
o inst (a,m,e1,e2;q) = Z H q‘)\(o)‘ "
A@) LA

v AL (= mi ) (m5 -0 a)

H (aa —ag+ divj;i/,_j,)

WL (e (1A
a=(a,...,an) Coulomb moduli
m= (mf,...,my) Masses of fundamental hypers
q = e>i" Instanton fugacity
T= 21; + g;” Complexified gauge coupling

J
[T[TTTTI™
[ 11

3

A

e

Cij= 51(i - 1) +82(j — ]_) i jjj
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In the classical limit 1,65 — 0

1
Z’(a7m7€17€2; q) = expig(a7m; q)
£1&2

with the special geometry of an algebraic integrable system emerging

genus zero SL(NN) Hitchin system = classical Gaudin



Prepotential F (a, m; q) of classical Gaudin:

o O, | P
Zf 6/7 E—q §—-1

Spectral curve Cy: Det (®(£) —n-1y) = 0

0F
o = f nde, o = § e
A; a; i



Prepotential F (a, m; q) of classical Gaudin:

Spectral curve C,: Det (Z, gf—’gl —n- IN) =0

Po+Pg+ 1+ P =0

Dy ~ diag (m{ —m*,....mi; — m"),
Py ~ diag(m™,...,mt, m(1 - N))

O ~diag(m—,...,m,m (1 - N)),
N Ndiag(mf—m_,...,mﬁ—m_)

Nm+:mf+...+m7{,,
Nm~ my +...+my

oF f
a; = d s = dg
?{\,- ndg§ 92 1
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For finite e — 0, €1 = A finite

1
Z(a,m,e1,e2i9) = exp—W(a,m, hiq)
2

With W describing the monodromy data of a family of PGL(/N)-opers

OO
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Quantum version of isomonodromic deformation
N. Reshetikhin’91

Knizhnik-Zamolodchikov/quantum differential equation

Two dimensional version of instanton partition function Givental’ 94
oV ~
R—— = H,' '
0z;

Two quasiclassical limits

<

ok —0, W =c¢r- x

~ oW
Hix = Eix, Ei = ——
82,‘

OO
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Quantum version of isomonodromic deformation
Knizhnik-Zamolodchikov/quantum differential equation

ow
k— = H;-
ot

.

Two quasiclassical limits
kS .

oerx—o0o, W =c¢ X
0S 0S
aZ,' N Hi <(9X7X,Z>

up to little symplectic subtleties of keeping something fixed

OO0
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BACK TO FOUR DIMENSIONS

New tool: blowup equations

Idea: compare the theory on M* and M* its blowup
Taubes’93,Kronheimer+Mrowka' 94, Fintushell+ Stern’ 96

Losev+NN—Shatashvili’97
Nakajima— Yoshioka' 03

2
> Blowup of a point in C

4C> QAQ,V\I,,LL) N<w1t/wlf/u_f1)

o) Iw)” l
|z) i )
C

LL/////////\ ! Z

lw)

1

(z=ww, z=wu)

2z 2 2
Ly 1zl+izl =k + 147)

2 2 2
W, [+ [w,\ = [n] =r o



BACK TO FOUR DIMENSIONS

New tool: blowup equations

2
> Blowup of a point in C

)| :
U@ G (et
iz Iw)" l JC
‘Z|\L/ i
|////:///‘ \1. CZ ( Z4= W1|,1/] z= wzu,>
point, (z,z)40

% (z,,2z)=

e, i



BACK TO FOUR DIMENSIONS
New tool: blowup equations

Idea: compare the theory on M* and M* its blowup

magneﬁg_ﬂ’uxes N-1
» ne Z

Iw)"




TOOL from FOUR DIMENSIONS: blowup equations

Z(a,m,e1,e2;q) =

> Z(aten,mere —e1;9)2(a+ean,m ey — £2,62;q)
ncZN-1

magnehc fluxes N-1

> neZ
A

| 21\l %
L2 |
[z, W)




FOUR DIMENSIONAL TOYS

Surface defects A type theery: UN) with ZN fundamental hypers

Kronheimer+Mrowka'93—95
Losev+Moore+NN-Shatashvili’95
NN'95, NN'04

SR

Q-background

Braverman’04
Gukov-+ Witten’'08
Kanno+ Tachikawa'11

W(a,m e, e0;w,q) = WP (am,eq,e0;w, q)W™ (a,m, g1, 60w, q)

Aw =341
— C|25162 H w, ! X Z H Wkw()‘)qkbulk()\) y
A
_ Zn
oG -)enx(m(a”""’gﬂuf)(mg i)
X i
a,l,;lzl I IT (aa7a5+di,j;i,,j/)

(i)ex(@) (7 jHex(h)
NN'17



OO
BPS/CFT correspondence

NN'04
Regular surface defect partition function

w(a7m751752;w7q) =

Solves 4-point Knizhnik-Zamolodchikov equation
Theorem by NN+ Tsymbalyuk’17—21




BPS/CFT correspondence

NN'04
Regular surface defect partition function

W(a,m,e1,e0;,W,q) =

Solves 4-point Knizhnik-Zamolodchikov equation
with W € (VT @ HW @ HW @ V=)°W

Theorem by NN+ Tsymbalyuk’17—21

For n=4, N=2 it is PVI
Corollary: Using BPZ equations observed earlier by
e1—0 isomonodromic T—function Toschner'15
logT

W~ e Litvinov+Lukyanov+ NN+ Zamolodchikov!16



Regular surface defect in N = 2 vs surface junction in N =4

W(a,me1,ew,q) € (VI@HWRHWE V‘)s["’

Solves 4-point Knizhnik-Zamolodchikov equation

& t
il g 00 0 YO il i |
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Intersecting regular and folded surface defect partition function
v (a,m,e1,e0;w,q) € CV

Solves 5-point Knizhnik-Zamolodchikov equation

\}\[= L{ super-Yang-Mills perspective (using 6d theory)

m o -model
on Hitchin moduli space

moduli space of

o [ flat Ge cmmmmns)(

Hom( 7, (S 4 pts) — G

B

rank N
cc brane

\N »,2 ‘super-Yang-Mills perspective
2|
( )

o ' regular surface defect

V

Q&

Mixed complex spins and finite dimensional reps
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Parallel regular and folded surface defect partition function

v (a7 m,eq,&2, W, q)

Solves 5-point Knizhnik-Zamolodchikov equation
In progress by Jeong+Lee+NN'21

Z, — =y

114 Fristed  Vacwwn pedale
fo=% // ’ A mmEs T
[of W=y

(o)t + W08 —o TAe) Yok Vi

Z|
’6 L Z Kio Dug = 2255

S RmE 2, - %
(¥0




The power of four dimensions: Blown up Surface defects

maqne‘l‘w fluxes N-1
surface defect .’ n = Z




The power of four dimensions: Blown up Surface defects

magnetic fluxes N-1
surface defect 2 -Ff (= Z

w(a7m7517€2;w7q) =

§ Z’(a +ean,m, e — €2, €2; CI) v (a +ein,myeg, e — €1, W, q)
nezN-1
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Limit £ — 0: higher rank analogue of GIL “Kyiv" formula

N = 2, n = 4 case: Gamayun—lorgov—Lysovyy’12

Schematically, T§VI(3, b;q) = Z e"ng(a + n; CI)CZ1
nez

VY
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BPS/CFT correspondence

Z-partition function = Wy-conformal block
Alday+ Gaiotto+ Tachikawa’ 09, Wyllard’ 09

For N = 2: Virasoro with

(61 +£2)?
£1€&2

c=1+6Q%, Q*>=

VY
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BPS/CFT correspondence
The Spin(4) — SU(2) reduction 1 + £, =0
corresponds to ¢ = 1 conformal blocks

For £1 + 2 =0, Z is expressed in terms of free fermions %, ¢
NN+ Okounkov’03

OO0
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BPS/CFT correspondence

The R* — R? reduction 1 — 0

corresponds to ¢ — oo, i.e. classical conformal blocks
A.and Al. Zamolodchikov, late eighties

VY
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Thus, using the four dimensional side
of the BPS/CFT correspondence

We managed to establish the ¢ = 1/c = oo duality
~ fermion/boson dualuty in two dimensions

This is one of the few almost proven dualities,

The existence of a 4 + 2-dimensional superconformal field theory

AR
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BEYOND Lie algebra symmetries

From sums over partitions

To higher dimensional suprises to come....
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