

Volker Schomerus, Eurostrings 2022, Lyon, 28. April 2022

2. July 1947 – 21. January 2022

2. July 1947 (Zarki, Poland) – 21. January 2022 (Lyon, France)

- 1971 PhD in Warsaw, Poland
- 1975-76 Univ. Göttingen
- 1978-79 Univ. Gdansk
- 1979-80 Harvard Univ.
- 1982-2000 CNRS Researcher at IHES Bures-sur-Yvette
- 2001-2014 at ENS Lyon

DESY. Page 3

Selected Contributions

Early contributions in

Constructive Quantum Field Theory

Iconic series of papers on

WZW coset Conformal Field Theory

- Boundaries and defects in 2D CFT,
 in particular for WZW cosets
- Non-abelian bundle gerbes

& relation with topological insulators

- Tolopogical Chern-Simons theory
- Turbulence

Commun. Math. Phys. 99, 197-252 (1985)

Communications in Mathematical Physics

© Springer-Verlag 1985

Massless Lattice ϕ_4^4 Theory: Rigorous Control of a Renormalizable Asymptotically Free Model

K. Gawędzki1.* and A. Kupiainen2

- 1 C.N.R.S., I.H.E.S., F-91440 Bures-sur-Yvette, France
- 2 Helsinki University, Research Institute for Theoretical Physics, Helsinki 17, Finland

Nuclear Physics B320 (1989) 625-668 North-Holland, Amsterdam

COSET CONSTRUCTION FROM FUNCTIONAL INTEGRALS

K. GAWEDZKI

CNRS, IHES, 91440 Bures-sur-Yvette, France

A. KUPIAINEN

Research Institute for Theoretical Physics, Helsinki University, 00170 Helsinki, Finland

Received 26 September 1988

A detailed study of the gauged Wess-Zumino-Witten models is presented. These models are shown to be conformal field theories realizing the Goddard-Kent-Olive coset construction. Partition functions are computed for an arbitrary group G with a subgroup H gauged. Correlation functions are shown to be computable in terms of WZW ones. Explicit cases of the minimal models and parafermionic theories are worked out.

DESY. Page 4

Selected Contributions

Pioneering work on

irrational CFT w. current algebra

symmetry

Strings in AdS₃ with pure NSNS flux

Unique teacher

&

Perfect editor-in-chief of *Annales Henri Poincare*

On Nov 24 2021 the AIP & APS announced that

2022 Dannie Heineman Prize for Mathematical Phyics

is awarded to

Krzysztof Gawedzki and Antti Kupianen

for ``fundamental contributions to quantum field theory, statistical mechanics, and fluid dynamics using geometric, probabilistic, and renormalization group ideas."

DESY. Page 6

Topological Phases within CFT Interfaces

Interfaces in Conformal Field Theory

Interfaces (and boundaries) in CFT have fascinating features:

- Significant freedom even for fixed bulk
- Host a lot of information about the bulk

Illustration in 2D:

 Even in rational 2D CFT moduli space of boundary conditions often continuous (e.g. in WZW models)

D-brane moduli

Through modular bootstrap one can recover bulk from boundary

open string spectrum

closed string couplings

Half-BPS interface of 4D N=4 SYM

A host for supergroup Chern-Simons theory

Half-BPS boundaries in N = 4 in 4D SU(N) SYM theory are consistent with

Kapustin-Witten topological twist → **SU(N) Chern-Simons theory** [Witten]

→ S,T duality provide new insight into Chern-Simons theory

Half-BPS (Janus) interface between

4D N=4 SYM with G = SU(N), SU(M)

hosts SU(N|M) Chern-Simons theory.

[Gaiotto, Witten] [Kapustin, Witten]

Supergroup CS theory is poorly understood.

[Rozansky, Saleur] ... [Mikhaylov]

Quantum Holonomy

The Weyl Algebra of Quantum CS Theory

Chern-Simons Holonomies

Classical description

Chern-Simons gauge field $A_u^a(x)$ equipped with the Atiyah-Bott PB:

$$\left\{A_{\mu}^{a}(x), A_{\nu}^{b}(y)\right\} \sim \frac{1}{k} \delta^{ab} \epsilon_{\mu\nu} \delta(x-y) \qquad A \mapsto g^{-1} A g + g^{-1} dg$$

$$\left\{A_{\mu}^{1}(x), A_{\nu}^{2}(y)\right\} \sim \frac{1}{k} \kappa^{12} \epsilon_{\mu\nu} \delta(x-y)$$

Gauge invariant observables built from holonomies along paths i:

$$U(i) = P \exp(\int_{s(i)}^{t(i)} A)$$

Poisson bracket takes the form

$$\left\{ m{U^1} \;, m{U^2} \;
ight\} = rac{1}{k} (\; m{r_-^{12}} \; m{U^1} m{U^2} \; + \; m{U^1} \; m{U^2} \; m{r_+^{12}})$$
 $\left[m{r_-^{12}} \;, m{r_-^{23}} \; + \; \left[m{r_-^{12}} \;, m{r_-^{13}} \; + \; \left[m{r_-^{13}} \;, m{r_-^{23}} \;
ight] = m{0}$

$$U \mapsto g^{-1}(s(i)) U(i) g(t(i))$$

$$r_{\pm} = \sum_{i \, simple} h^i \otimes h^i + 2 \sum_{\alpha \, pos} t^{\pm \alpha} \otimes t^{\mp \alpha}$$

Chern-Simons Holonomies

Quantization

Suppose we have a solutions R_{\pm} of quantum Yang-Baxter equation s.t.

$$R_{\pm} = 1 + \frac{1}{k}r_{\pm} + \cdots$$

→ quantization of holonomy along open curve gives rise to link algebra

<u>Definition</u>: [Alekseev, Grosse, VS] The link algebra is generated by matrix elements of U satisfying quadratic relations $R_-^{12}U^1U^2 = U^2U^1R_+^{12}$

- R_{\pm} can be constructed for all simple Lie superalgebras g from the generators of the quantum deformed enveloping algebra $\mathcal{G} = U_g(g)$
- Link algebra admits two (graded) commuting actions of G

quantization gauge trafos in s and t

Quantum Holonomies

Example: GL(1|1)

$$q=e^{rac{2\pi i}{p}}$$

$$\mathcal{G}=U_q(gl(1|1))$$
 k_{lpha} , k_{eta} , e_{\pm}

bosonic †

fermionic

$$egin{align} [k_lpha,k_eta] &= 0 & k_lpha^p = k_eta^p = 1 \ [k_lpha,e_\pm] &= 0 & k_eta e_\pm = q^{\pm 1} e_\pm k_eta \ \{e_\pm,e_\pm\} &= 0 & \{e_+,e_-\} = rac{k_lpha - k_lpha^{-1}}{q-q^{-1}} \end{split}$$

$$R = \frac{1}{p^2} \left(1 \otimes 1 - (q - q^{-1}) e_+ \otimes e_- \right) \sum_{n,m=0}^{p-1} \sum_{s,t=0}^{p-1} q^{nt+ms} k_\alpha^n k_\beta^m \otimes k_\alpha^{-s} k_\beta^{-t}$$

Link algebra $\,u\,$ is a q-deformation of

$$egin{align} \ell_lpha\ell_eta &= \ell_eta\ell_lpha & \ell_lpha^p = 0 = \ell_eta^p \ \ell_lpha\xi_\pm &= \xi_\pm\ell_lpha & \ell_eta\xi_\pm = q^{\mp 1}\xi_\pm\ell_eta \ \{\xi_\pm,\xi_\pm\} &= 0 & \{\xi_+,\xi_-\} = q-q^{-1} \ \end{pmatrix}$$

Quantum Holonomies

Realization on Kitaev Spin DOF

Suppose that $G = D(\mathcal{H})$ is Drinfel'd double of some Hopf algebra \mathcal{H} $G \sim \mathcal{H} \otimes \mathcal{H}^*$

Kitaev's triangle operators $T: \mathcal{H} \to \mathcal{H}$

$$T_E^h k = h k$$
 $h \in \mathcal{H}$ "electric" $T_M^{\alpha} k = \langle \alpha, k_2 \rangle k_1$ $\alpha \in \mathcal{H}^*$ "magnetic"

Theorem: [Meusburger] $U \sim T_E T_M : \mathcal{H} \to \mathcal{H}$ behaves like quantum holonomy for algebra $\mathcal{G} = D(\mathcal{H})$ of gauge trafos given by DrinfeldD

Super-Chern-Simons Observables & States

Quantum Group Lattice Gauge Theory

The Combinatorial Quantization Approach

[Fock, Rosly] [Alekseev, Grosse, VS]

Draw graph Γ on the surface $\Sigma_{n,g}$ & glue link algebras accordingly:

choose cilia, orient links

$$U^{1}(i)U^{2}(j) = U^{2}(j)U^{1}(i)R^{12}$$

$$U^{1}(i)U^{2}(k) = U^{2}(k)U^{1}(i)_{\partial i \cap \partial k = \emptyset}$$

$$U(j)U(-j) = v$$
 ribbon element

• Defines graph algebra $\mathcal{F}(\Gamma_{cil})$

- → Factorization algebras
- Consistent with local deformed gauge symmetry at the vertices
- Chern-Simons observables: algebra $\mathcal{A}\left(\Sigma_{n,g}\right)$ of gauge invariants

Kitaev Models

A special case of combinatorial CS theory

If $\mathcal{G} = D(\mathcal{H})$ Drinfeld double there exists a \mathcal{H} -spin model realization:

$$U(i)$$
: $\mathcal{H}^{\otimes E} \rightarrow \mathcal{H}^{\otimes E}$ $E = \# \text{ of edges}$

Kitaev's time evolution operator

$$U_K \sim \prod_{x \in V} A_x^m \circ \prod_{p \in P} B_p^{\eta}$$

constructed from

Vertex operators
$$A_x = \prod_{t(i)=x} T_{E,i}$$

Face operators
$$B_p = \prod_{j \in \partial p} T_{M,j}$$

[Kitaev] [Levin, Wen]

$$\mathcal{H} = \mathbb{C}(\mathbb{Z}_2) \to \mathsf{Kitaev's}$$
 toric code

Chern-Simons Observables & Ground States

General construction

Pick irrep π_a of $\mathcal G$ for each vertical WL and introduce the space

$$V^{\pi_a,g}\colon=V^{\pi_1}\otimes V^{\pi_2}...\otimes V^{\pi_n}\otimes \mathcal{G}^{\otimes\,\mathsf{g}}$$

Theorem: [Aghaei, Gainutdinov, Pawelkiewicz, VS]

One can define an action Chern-Simons observables $\mathcal{U}(\Sigma_{n,g})$ on the space $V^{\pi_a,g}$ that centralizes the canonical action of $\mathcal{G} = \mathcal{G}_*$. \leftrightarrow like SU(N) and permutation group

- Provides complete control of representation theory of CS
 observables as intricate as representation theory of G
- Algebra $\mathcal{Q}(\Sigma_{n,g})$ of observables contains Dehn twist generators of the mapping class group \rightarrow reps of MCG/`quantum gates"

Chern-Simons Observables & Ground States

Example: GL(1|1) Chern-Simons Theory in a torus

Space $W^{g=1}$ of ground states given by $\mathcal G$ invariants within $V^{g=1}=\mathcal G$

$$\dim W^{g=1}=p^2+1$$

$$\mathcal{G}\cong \left(p^2-1\right)P_0\oplus 2\,\pi_0\oplus\pi_1\oplus\pi_{-1}$$

Carries (p^2+1) -dim. projective representation of modular group SL(2,Z)

$$S = \widehat{v}(b) \widehat{v}(a) \widehat{v}(b)$$
 $T = \widehat{v}(a)^{-1}$
generators of Dehn twists along a,b cycles

[Aghaei, Gainutdinov, Pawelkiewicz, VS]

- **←** [Lyubashenko, Majid]
- ... [Mikhaylov] for gl(1|1)

Conclusions and Outlook

Efficient algebraic algorithm to determine the space of ground states along w. representations of MCG for supergroup Chern-Simons theory

$$G = gl(1|1) \rightarrow sl(1|2), psl(2|2)$$
?

Applications include calculation of topological invaraints for knots and and 3-manifolds

From MCG reps using Heegaard representation & Dehn surgery

Extension of Kitaev/Levin-Wen string-net models to graded spin DOF ${\mathcal H}$

