Liouville gravity as dilaton gravity

Thomas Mertens

Ghent University

Based on  arXiv:2006.07072 with G.J. Turiaci
arXiv:2109.07770 with Y. Fan

fwo .-

Thomas Mertens




Introduction

Goal: study lower-dimensional models of quantum gravity:

Mertens



Introduction

Goal: study lower-dimensional models of quantum gravity:
Interesting C|aSS - 2d dl|at0n graVIty mOde|S Grumiller-Kummer-Vasilevich '02

S = iete [ ®xy/=g (PR + W(P)) + gz § dT\/—7Pbay K

Liouville i Thomas Mertens



Introduction

Goal: study lower-dimensional models of quantum gravity:
Interesting C|aSS - 2d dl|at0n graVIty mOde|S Grumiller-Kummer-Vasilevich '02

S = toc [ I?x/=g (PR + W(®)) + gic § dT/=7Ppay K
JT gravity = specify to W(®) = —Ad

1
Syt = —/dzx\/_—gd) (R—N)+ —?{dﬂ/_cbbdy
167G

Teitelboim '83, Jackiw '85
Negative cosmological constant A = —2 — AdS; space

Liouville gravity as dilaton gravity Thomas Mertens



Introduction

Goal: study lower-dimensional models of quantum gravity:
Interesting C|aSS - 2d dl|at0n graVIty mOde|S Grumiller-Kummer-Vasilevich '02

S = toc [ I?x/=g (PR + W(®)) + gic § dT/=7Ppay K
JT gravity = specify to W(®) = —Ad

Syt = o /d2X\/_¢ (R—N)+ %dﬁ/_d)bdy
Teitelboim '83, Jackiw '85

Negative cosmological constant A = —2 — AdS; space
Features:

» Appears as near-horizon theory of near-extremal
higher-dimensional black holes

» Describes low-energy sector of all (known) SYK-like models

» With suitable boundary conditions, reduces to Schwarzian
action Aimheiri-Polchinski '15, Jensen '16, Maldacena-Stanford-Yang '16, Engelséy-TM-Verlinde '16

> Exactly solvable to large extent
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Review - JT disk partition function

Exact quantum solution of amplitudes: [ %}%@Tl ...e =T

Disk Partition functlon Cotler et al. '16, Maldacena-Stanford '16, Stanford-Witten '17

Q o5 dk(k sinh 2k )e =%

Energy variable E = k2, p(E) = sinh27VE

AdS; Euclidean holographic boundary with length = 3, filled in by
path integrating over all metrics and dilatons
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Review - JT disk partition function

Exact quantum solution of amplitudes: [ %}%@Tl ...e =T

Disk Partition functlon Cotler et al. '16, Maldacena-Stanford '16, Stanford-Witten '17

Q o5 dk(k sinh 2k )e =%

Energy variable E = k%,  p(E) = sinh27VE

AdS; Euclidean holographic boundary with length = §3, filled in by
path integrating over all metrics and dilatons

Thermodynamic limit (saddle):
p(E) ~e™VE = VE=7%
Matches with black hole first law (mass vs Hawking temperature)

for classical AdS, JT black hole solution: Aimheiri-Polchinski '15
ds? = —(r* — r2)dt? + £ r2 O(r)y=r

I’
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Review - JT boundary two-point function

Boundary two-point function (of some boundary CFT matter
operators O"(7) coupled to gravity):
Bagrets-Altland-Kamenev '16, '17, TM-Turiaci-Verlinde '17, '18, Blommaert-TM-Verschelde '18, Yang '18,

Kitaev-Suh '18, '19, lliesiu-Pufu-Verlinde-Wang '19 ...

<(9h(7'1)0h(7'2)>ﬁz P T =
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Review - JT boundary two-point function

Boundary two-point function (of some boundary CFT matter
operators O"(7) coupled to gravity):
Bagrets-Altland-Kamenev '16, '17, TM-Turiaci-Verlinde '17, '18, Blommaert-TM-Verschelde '18, Yang '18,

Kitaev-Suh '18, '19, lliesiu-Pufu-Verlinde-Wang '19 ...
<(9h(7'1)(’)h(7'2)>5 = n T =

@ T(h+ ik + iky)
r(2h)

TV
vertex functions

+oo +o00
dhky (ky sinh27ky) | dko(ky sinh 2mky) e ™K —(6=7)
0 0

(T=m—m11)
=+ sign convention = take product of all cases
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Review - JT boundary two-point function

Boundary two-point function (of some boundary CFT matter
operators O"(7) coupled to gravity):
Bagrets-Altland-Kamenev '16, '17, TM-Turiaci-Verlinde '17, '18, Blommaert-TM-Verschelde '18, Yang '18,

Kitaev-Suh '18, '19, lliesiu-Pufu-Verlinde-Wang '19 ...

<(9h(7'1)(’)h(7'2)>5 = 7 T o=
+00 +00 [(h+ ik + ik
dhky (kysinh 27ky) | dko(ky sinh 2mkg) e K~ (F-7)k (h ik & ike)
0 0 r(2h)

vertex functions
(T=m—m11)

=+ sign convention = take product of all cases

Generalization to multi-point functions and OTOCs possible

TM-Turiaci-Verlinde '17, '18
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JT gravity: summary

Importance of these calculations for gravity:

» Boundary correlators: interpretation in terms of gravitational
physics (shockwaves, complexity = volume, bulk
entanglement entropy, spectral occupation and Unruh heat
bath phySICS fOI’ bulk OperatorS .. ) Maldacena-Stanford-Yang '16,

Lam-TM-Turiaci-Verlinde '18, Yang '18, TM '19, Blommaert-TM-Verschelde '19, '20 . . .
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JT gravity: summary

Importance of these calculations for gravity:

» Boundary correlators: interpretation in terms of gravitational
physics (shockwaves, complexity = volume, bulk
entanglement entropy, spectral occupation and Unruh heat
bath physics for bulk operators . ..) Maldacena-Stanford-Yang ‘16,
Lam-TM-Turiaci-Verlinde '18, Yang '18, TM '19, Blommaert-TM-Verschelde '19, '20 . . .

» Higher genus and multi-boundary amplitudes: important to
understand very-late time correlators, explain Page curve with
replica wormholes saad-shenker-Stanford '19, Saad 19,

Almheiri-Hartman-Maldacena-Shaghoulian-Tajdini '19, Penington-Shenker-Stanford-Yang '19

(not in this talk)
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JT gravity: summary

Importance of these calculations for gravity:

» Boundary correlators: interpretation in terms of gravitational
physics (shockwaves, complexity = volume, bulk
entanglement entropy, spectral occupation and Unruh heat
bath physics for bulk operators . ..) Maldacena-Stanford-Yang ‘16,

Lam-TM-Turiaci-Verlinde '18, Yang '18, TM '19, Blommaert-TM-Verschelde '19, '20 . . .

» Higher genus and multi-boundary amplitudes: important to
understand very-late time correlators, explain Page curve with
rep|ica worm h0|es Saad-Shenker-Stanford '19, Saad '19,
Almheiri-Hartman-Maldacena-Shaghoulian-Tajdini '19, Penington-Shenker-Stanford-Yang '19
(not in this talk)

— Would be interesting to extend our class of solvable models to
find out how generic these lessons are
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JT gravity: summary

Importance of these calculations for gravity:

» Boundary correlators: interpretation in terms of gravitational
physics (shockwaves, complexity = volume, bulk
entanglement entropy, spectral occupation and Unruh heat
bath physics for bulk operators . ..) Maldacena-Stanford-Yang ‘16,
Lam-TM-Turiaci-Verlinde '18, Yang '18, TM '19, Blommaert-TM-Verschelde '19, '20 . . .

» Higher genus and multi-boundary amplitudes: important to
understand very-late time correlators, explain Page curve with
replica wormholes saad-shenker-Stanford '19, Saad 19,
Almheiri-Hartman-Maldacena-Shaghoulian-Tajdini '19, Penington-Shenker-Stanford-Yang '19
(not in this talk)

— Would be interesting to extend our class of solvable models to
find out how generic these lessons are

GOAL: discuss 2d Liouville gravity amplitudes in same language
— interpret as specific model of dilaton gravity
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Liouville gravity: definition

Liouville gravity = non-critical string = 2d matter CFT coupled to
gravity, or critical string with a 2d Liouville + matter + ghost CFT
Polyakov '81, David '88, Distler-Kawai '89 . . .

Total action: S; + Sy + Sgn

with conformal anomaly constraint cp + ¢, + g = 0

Thomas Mertens
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Liouville gravity = non-critical string = 2d matter CFT coupled to
gravity, or critical string with a 2d Liouville + matter + ghost CFT
Polyakov '81, David '88, Distler-Kawai '89 . . .

Total action: S; + Sy + Sgn

with conformal anomaly constraint cp + ¢, + g = 0

> Liouville action: S, = £ [ [(@gf))z + QR + 4mpe??

Q=b+bt ¢ =1+6Q>>25
Arises from conformal factor g, = ezbd’gw, of 2d gravity
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Liouville gravity: definition

Liouville gravity = non-critical string = 2d matter CFT coupled to
gravity, or critical string with a 2d Liouville + matter + ghost CFT

Polyakov '81, David '88, Distler-Kawai '89 . . .

Total action: S; + Sy + Sgn
with conformal anomaly constraint cp + ¢, + g = 0

> Liouville action: S, = £ [ [(@gf))z + QR + 4mpe??
Q=b+bt ¢ =1+6Q>>25
Arises from conformal factor g, = ezbd’gw, of 2d gravity

» For most of talk: Sy, = arbitrary CFT with ¢y < 1
particular choice to keep in mind:
— timelike Liouville CFT (Liouville with b — ib, ¢ — —i)
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Liouville gravity: definition

Liouville gravity = non-critical string = 2d matter CFT coupled to
gravity, or critical string with a 2d Liouville + matter + ghost CFT
Polyakov '81, David '88, Distler-Kawai '89 . . .

Total action: S; + Sy + Sgn

with conformal anomaly constraint cp + ¢, + g = 0

> Liouville action: S, = £ [ [(@gf))z + QR + 4mpe??
Q=b+bt ¢ =1+6Q>>25
Arises from conformal factor g, = ezbd’gw, of 2d gravity
» For most of talk: Sy, = arbitrary CFT with ¢y < 1
particular choice to keep in mind:
— timelike Liouville CFT (Liouville with b — ib, ¢ — —i)

» Sen is usual bc-ghost theory with ¢, = —26

Liouville gravity as dilaton gravity Thomas Mertens
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Phrase in same language as JT gravity:
— Reinterpret worldsheet topology as the 2d Euclidean spacetime
of a gravitational model
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Interested in holography — 2d manifold with boundary of fixed
length §; in this talk only disk topology
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Liouville gravity: Fixed-length boundaries

Phrase in same language as JT gravity:
— Reinterpret worldsheet topology as the 2d Euclidean spacetime
of a gravitational model

Interested in holography — 2d manifold with boundary of fixed
length §; in this talk only disk topology

Boundary conditions:

» When viewing the theory as 2d quantum gravity, Liouville field
related to metric g,,: ds? = e2b¢dzdz
= Boundary length = ¢ = § €? is fixed
= Fourier transform of FZZT-brane boundary (Neumann-like)
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Liouville gravity: Fixed-length boundaries

Phrase in same language as JT gravity:
— Reinterpret worldsheet topology as the 2d Euclidean spacetime
of a gravitational model

Interested in holography — 2d manifold with boundary of fixed
length §; in this talk only disk topology

Boundary conditions:

» When viewing the theory as 2d quantum gravity, Liouville field
related to metric g,,: ds? = e2b¢dzdz
= Boundary length = ¢ = § €? is fixed
= Fourier transform of FZZT-brane boundary (Neumann-like)

» Matter + ghost: vacuum brane boundary (Dirichlet)

Liouville gravity as dilaton gravity Thomas Mertens
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Disk partition function

Fixed length amplitude:
Z(f) ~ fooo ds Sinh(27'rb5) sinh (2_7[;5) e lrcosh(2mbs) . — VE

sinh

1

Thomas Mertens



Disk partition function

Fixed length amplitude:

Z(€) ~ [, ds sinh(2mbs) sinh (2£2) e~freosh(mbs) 4 = \/Si‘nf%

> JT ||m|t b — 0, g ~ %% — -+ OO Saad-Shenker-Stanford '19, TM-Turiaci '20

Z(6) — [° dk (ksinh2mk) e o7k s = bk
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Disk partition function

Fixed length amplitude:

~ [ ds sinh(27rbs)sinh (@) e~ trcosh(2mbs) s = \/S,\nf%

> JT ||m|t b — 0 g —> —+ 0O Saad-Shenker-Stanford '19, TM-Turiaci '20

) =[5~ dk (ksinh 27rk) e—tirk? s = bk
> Back to full LiouviIIe gravity, with interpretation of ¢/ = 3:
B) ~ [° dE e PEp(E),  p(E) = sinh ( A arccoshE )
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Disk partition function

Fixed length amplitude:

Z(€) ~ [, ds sinh(2mbs) sinh (2£2) e~freosh(mbs) 4 = \/Si‘nf%

> JT ||m|t b — 0, g ~ %% — -+ OO Saad-Shenker-Stanford '19, TM-Turiaci '20

Z(6) — [° dk (ksinh2mk) e o7k s = bk

» Back to full Liouville gravity, with interpretation of ¢ = f3:
Z(B) ~ [ dE e PEp(E),  p(E) = sinh (#arccosh%)
Thermodynamic limit (saddle):

VE2 — 2 = ﬁ
IR: E =k + Ejt = VE;7 ~ 871, the JT black hole first law

UV: E~p1
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Disk partition function

Fixed length amplitude:

Z(€) ~ [, ds sinh(2mbs) sinh (2£2) e~freosh(mbs) 4 = \/Si‘nf%

» JT limit: b—0, ¢ ~ %% — 0O Saad-Shenker-Stanford '19, TM-Turiaci 20
Z(6) — [° dk (ksinh2mk) e o7k s = bk

» Back to full Liouville gravity, with interpretation of ¢ = f3:
Z(B) ~ [ dE e PEp(E),  p(E) = sinh (#arccosh%)
Thermodynamic limit (saddle):

VE2 — 2 = ﬁ
IR: E =k + Ejt = VE;7 ~ 871, the JT black hole first law

UV: E~p1
— holographic UV/IR connection: not aAdS like JT gravity
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Boundary two-point function

Boundary tachyon vertex operator: Bg = ¢ el
— Matter primary ®,, gravitationally dressed by Liouville
operator e5?, and gauge-fixed
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Boundary two-point function

Boundary tachyon vertex operator: Bg = ¢ el
— Matter primary ®,, gravitationally dressed by Liouville
operator e5?, and gauge-fixed )

Boundary 2-pt function = (BgBg), ,, = Bs B

1
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Boundary two-point function

Boundary tachyon vertex operator: Bg = ¢ el
— Matter primary ®,, gravitationally dressed by Liouville

operator e5?, and gauge-fixed )
Boundary 2-pt function = (BgBg), ,, = Bs B
b
— fO dsidsy p 51) (52)6 —{1k cosh 27bs;  —2k cosh 27bsy Sb(m:(jz:;;,,j):@)

where p(s) = sinh(2mbs) sinh (2%s) and By = b — B Tv-Turisci 20
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Boundary two-point function

Boundary tachyon vertex operator: Bg = ¢ el
— Matter primary ®,, gravitationally dressed by Liouville

operator e5?, and gauge-fixed )
Boundary 2-pt function = (BgBg), ,, = Bs B
b
— fO dsidsy p 51) (52)6 —{1k cosh 27bs;  —2k cosh 27bsy Sb(ﬂ’\:(:;;;,,j):152)

where p(s) = sinh(2mbs) sinh (2%s) and By = b — B Tv-Turisci 20
Technicality: Liouville piece = {e1?(x)e®%(0)) ~ a(l’Bngz)Agl,@

— 6(0) cancelled by modding out CKG
— Matter + ghost cancels out worldsheet coordinate dependence
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Boundary two-point function

Boundary tachyon vertex operator: Bg = ¢ el
— Matter primary ®,, gravitationally dressed by Liouville

operator e5?, and gauge-fixed )
Boundary 2-pt function = (BgBg), ,, = Bs B
b
— fO dsidsy p 51) (52)6 —{1k cosh 27bs;  —2k cosh 27bsy Sb(ﬂl\:(:;;;l):@)

where p(s) = sinh(2mbs) sinh (2%s) and By = b — B Tv-Turisci 20
Technicality: Liouville piece = {e1?(x)e®%(0)) ~ a(l’Bngz)Agl,@

— 6(0) cancelled by modding out CKG
— Matter + ghost cancels out worldsheet coordinate dependence

JT limit (b — 0, Bm = bh): Sp(bx) ~ I'(x):

Jo*° dka dko (ku sinh 2mky ) (ko sinh 2mky) e~ it g kitura Hiiassle)
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Group theory interpretation of JT gravity

Example: JT boundary two-point function:
f dkl(kl sinh 27Tk1) f dkg(kz sinh 27Tk2) e_.,-k12_(/3—7')k22 %
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Group theory interpretation of JT gravity

Example: JT boundary two-point function:

[ dkq(ky sinh 27ky) [ dko(ko sinh 2 ky) e~ 7K~ (6-7)R r(hjﬁ(kakZ)

— Measure and energies match with Plancherel measure an
Casimir of continuous irreps of (modification of) SL(2,R)
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Group theory interpretation of JT gravity

Example: JT boundary two-point function:

[ dkq(ky sinh 27ky) [ dko(ko sinh 2 ky) e~ 7K~ (6-7)R r(hjﬁ(kakZ)

— Measure and energies match with Plancherel measure an
Casimir of continuous irreps of (modification of) SL(2,R)
— Vertex function is 3j-symbol® with two such continuous irreps
(states) and one discrete lowest weight irrep (operator):

a2 B\ (kB
f dgRj;myn (&) Rip,many (&) Rjs,msns (&) = (ml mo m3> (nl o n3>

where R; mn(g) are group representation matrices = (j, m| g |, n)
E.g. Wigner D-functions for SU(2)
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Group theory interpretation of JT gravity

Example: JT boundary two-point function:

[ dkq(ky sinh 27ky) [ dko(ko sinh 2 ky) e~ 7K~ (6-7)R r(hjﬁ(kff“)
— Measure and energies match with Plancherel measure an
Casimir of continuous irreps of (modification of) SL(2,R)

— Vertex function is 3j-symbol? with two such continuous irreps
(states) and one discrete lowest weight irrep (operator):

J &Ry myn (&) Ris,many (&) Ris,mans (&) = (Jl 2 J3> <J1 2 J3>

my mz ms3 niy na n3

where R; mn(g) are group representation matrices = (j, m| g |, n)
E.g. Wigner D-functions for SU(2)

Applied to our case: [ dx Ry, 00(x)Rh,00(x)Rk,,00(X)
Ri.00(x) = Koik(€*) are representation matrices in mixed
(parabolic) basis = Whittaker functions in math literature
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Group theory interpretation of JT gravity

Example: JT boundary two-point function:

[ dkq(ky sinh 27ky) [ dko(ko sinh 2 ky) e~ 7K~ (6-7)R r(hjﬁ(kff“)

— Measure and energies match with Plancherel measure an
Casimir of continuous irreps of (modification of) SL(2,R)
— Vertex function is 3j-symbol? with two such continuous irreps
(states) and one discrete lowest weight irrep (operator):

a2 B\ (kB
J &Ry myn (&) Ris,many (&) Ris,mans (&) = (ml mo m3> <n1 o n3>

where R; mn(g) are group representation matrices = (j, m| g |, n)
E.g. Wigner D-functions for SU(2)

Applied to our case: [ dx Ry, 00(x)Rh,00(x)Rk,,00(X)
Ri.00(x) = Koik(€*) are representation matrices in mixed
(parabolic) basis = Whittaker functions in math literature

J720 dx Kok, (€¥) 2 Koy (€%) ~ %
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Group theory interpretation of JT gravity

Example: JT boundary two-point function:

[ dkq(ky sinh 27ky) [ dko(ko sinh 2 ky) e~ 7K~ (6-7)R r(hjﬁ(kff“)
— Measure and energies match with Plancherel measure an
Casimir of continuous irreps of (modification of) SL(2,R)

— Vertex function is 3j-symbol? with two such continuous irreps
(states) and one discrete lowest weight irrep (operator):

J &Ry myn (&) Ris,many (&) Ris,mans (&) = (Jl 2 J3> <J1 2 J3>

my mz ms3 niy na n3

where R; mn(g) are group representation matrices = (j, m| g |, n)
E.g. Wigner D-functions for SU(2)

Applied to our case: [ dx Ry, 00(x)Rh,00(x)Rk,,00(X)

Ri.00(x) = Koik(€*) are representation matrices in mixed
(parabolic) basis = Whittaker functions in math literature
S22 dx Koy (€9)e2M Koy (%) ~ T te)

Explanation: 15t order SL(2,R) BF formulation of JT gravity

Liouville gravity as dilaton gravity Thomas Mertens



Quantum group interpretation of Liouville gravity (1)

Liouville gravity amplitudes arise from (modification of)
Uq(sl(2,R)), g = e™” (b— 0= q — 1 is undeformed algebra)
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Quantum group interpretation of Liouville gravity (1)

Liouville gravity amplitudes arise from (modification of)
Uq(sl(2,R)), g = e™” (b— 0= q — 1 is undeformed algebra)
Continuous self-dual irreps ponsot Teschner '99 . . .-

» Casimir operator Cs = cosh 2mwbs

> Plancherel measure: dy(s) = dssinh 2mbs sinh 272
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Quantum group interpretation of Liouville gravity (1)

Liouville gravity amplitudes arise from (modification of)
Uq(sl(2,R)), g = e™” (b— 0= q — 1 is undeformed algebra)
Continuous self-dual irreps ponsot Teschner '99 . . .-

» Casimir operator Cs = cosh 2mwbs

> Plancherel measure: dy(s) = dssinh 2mbs sinh 272
Example: boundary two-point function:

400 — 01 cosh 27bs; ,—05 cosh 27bs, Sp(Bmtisitisy)
Jo = dsidsy p(s1) p(s2) e e S G v

Measure and energies again match with Plancherel measure and
Casimir operator
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Quantum group interpretation of Liouville gravity (1)

Liouville gravity amplitudes arise from (modification of)
Uq(sl(2,R)), g = e™” (b— 0= q — 1 is undeformed algebra)
Continuous self-dual irreps ponsot Teschner '99 . . .-

» Casimir operator Cg = cosh 27bs

» Plancherel measure: du(s) = dssinh 2mwbs sinh 2%5
Example: boundary two-point function:

+oo —{1 cosh 27bsy ,—o cosh 2mbsy Sp(BmEisitisz)
fO dsidsy ,0(51) p(Sz) e € Sp(28m)

Measure and energies again match with Plancherel measure and
Casimir operator
Parabolic matrix element of Uy(s[(2, R)) R¢ gg(X) Kharchev et al. 01:

; . . o —ie(C? i
eTi2sx fj:: (27rb)7;{§/b72is/b Sp(—iC)Sp(—i2s — iC)e ie(¢*+2sC) g2micx

Leads to correct vertex function as 3j-symbol with two such
insertions and one discrete rep insertion: T-Turiaci '20, Fan-TM '21

+00 * 2 X Sp(Bmtisitisy)
f—oo dx 561,00(X) 562,00(X)e M Sp(28m)
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Quantum group interpretation of Liouville gravity (2)

7 Explanation by some g-BF formulation of Liouville gravity?
— Open problem, we will present a different gauge theory
perspective further on
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Quantum group interpretation of Liouville gravity (2)

7 Explanation by some g-BF formulation of Liouville gravity?
— Open problem, we will present a different gauge theory
perspective further on

Extension: A/ = 1 Liouville supergravity analogously has
Ug(osp(1]2,R)) quantum supergroup structure fan-Tm 21
Proposal for parabolic representation matrix element for
Ug(osp(1]2,R)):
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Quantum group interpretation of Liouville gravity (2)

7 Explanation by some g-BF formulation of Liouville gravity?
— Open problem, we will present a different gauge theory
perspective further on

Extension: A/ = 1 Liouville supergravity analogously has
Ug(osp(1]2,R)) quantum supergroup structure fan-Tm 21
Proposal for parabolic representation matrix element for
Ug(osp(1]2,R)):

€, £ _ _misx (100 d¢ —mi £(¢2425¢) milx
Rs,OO(X) =e oo (anb)-2/E 2 5 ( )emi€

% [Sis(—i¢)Sr(—i2s — iC) % Sr(—i¢)Sns(—i2s — iC)]

computed using representation theory of quantum supergroup

Liouville gravity as dilaton gravity Thomas Mertens



Liouville gravity as a dilaton gravity model

Rewrite Liouville gravity as a dilaton gravity model with specific

potentia| Seiberg-Stanford (unpublished), TM-Turiaci '20
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Liouville gravity as a dilaton gravity model

Rewrite Liouville gravity as a dilaton gravity model with specific
potentia| Seiberg-Stanford (unpublished), TM-Turiaci '20
Assumption: Describe matter as timelike Liouville:

5 = 5.[¢] + Smlx]
Sul] = 2= Jy |(Vo)? + dmpue? |

Sl = & fy |[~(Vx)? - 4mpe?|
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Rewrite Liouville gravity as a dilaton gravity model with specific
potentia| Seiberg-Stanford (unpublished), TM-Turiaci '20
Assumption: Describe matter as timelike Liouville:

S = 5[] + Smlx]

Sulo] = & Ji [(V9)? + dmpue®|

Sull = & Jy [~(Vx)? = 4mue®|

Field redefinition: ¢ = b=tp — brd and x = b~1p + brd:
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Liouville gravity as a dilaton gravity model

Rewrite Liouville gravity as a dilaton gravity model with specific
potentia| Seiberg-Stanford (unpublished), TM-Turiaci '20
Assumption: Describe matter as timelike Liouville:

S = 5[] + Smlx]

Sulo] = & Jy [(V6)? + dmpe?e?]

Smld = 2x J> {—(ﬁx)2 - 4##6“’"}

Field redefinition: ¢ = b=tp — brd and x = b~1p + brd:
—-S=—[00-0p+ [ 62’)(,ue*2’”’2‘1> — ,uezﬂbzq’)

Setting ds? = e*’dzdz (R ~ e~2’9dp) — first term = [ \/gR®
Second term = W/(®) ~ sinh (2rb*®)

The limit for small b gives back JT gravity

= Liouville gravity = sinh dilaton gravity

Liouville gravity as dilaton gravity Thomas Mertens



Classical dilaton gravity and asymptotics (1)

Let's now investigate holography in sinh dilaton gravity
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Up to bulk diffeo’s, the general classical solution can be written as:
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Describes BH geometry with horizon at r = rp,
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Let's now investigate holography in sinh dilaton gravity

General dilaton gravity: cegenberg Kunstatter-Louis-Martinez '94, Witten 20

S =1 [d?x/—g(®R+ W(P))

Up to bulk diffeo’s, the general classical solution can be written as:
ds® = —A(r)dt? + X(—rrz), d(r) = r with A(r) = fr: dr'w(r')
Describes BH geometry with horizon at r = rp,

and E =1 (W7 6TTH) py(0)do

Choosing W/(®) ~ sinh 27b?® leads to VE2 — k2 = Ty /b?
— matches with first law derived in semi-classical regime from disk
partition function
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Classical dilaton gravity and asymptotics (1)

Let's now investigate holography in sinh dilaton gravity

General dilaton gravity: cegenberg Kunstatter-Louis-Martinez '94, Witten 20

S =1[d*/=g(®R + W(®))

Up to bulk diffeo’s, the general classical solution can be written as:
ds® = —A(r)dt? + X(—rrz), d(r) = r with A(r) = fr; dr'w(r')
Describes BH geometry with horizon at r = rp,

and E =1 (W7 6TTH) py(0)do

Choosing W/(®) ~ sinh 27b?® leads to VE2 — k2 = Ty /b?
— matches with first law derived in semi-classical regime from disk
partition function

2 _ _ cosh2rwb?r—cosh2mb?ry, 4,2 27 b? sin wb? 2
ds® = 27 b2 sin b2 dt® + cosh 2b2r—cosh 2w b2ry, dr

For r,r, < 1/b? we get JT black hole
For r — 00, R ~ e2™2°r —s Curvature singularity at the boundary
g-deformed holography?

Liouville gravity as dilaton gravity Thomas Mertens
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Classical dilaton gravity and asymptotics (2)

Liouville

Boundary behavior of fields:
Recall our field redefinition: ¢ = b='p— br® and x = b~ 1p+ brd
Liouville length can be written as: £ = [ eP?dt = [ ePe 0" ®dt

Using asymptotics from classical metric
2
eﬂ'b r

p — i :
e, oo = limroioo TR and dilaton
D(r)], oo = limr 4o r, we learn that:
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Classical dilaton gravity and asymptotics (2)

Boundary behavior of fields:

Recall our field redefinition: ¢ = b='p— br® and x = b~ 1p+ brd
Liouville length can be written as: £ = [ eP?dt = [ ePe 0" ®dt

Using asymptotics from classical metric

b2r
P BT e™ .
e, o = |Im'r_)+oo T and dilaton
D(r)], oo = limr 4o r, we learn that:

» /| ~ { where £ is the length in the dt metric
— Liouville length £ and length £ measured in the dilaton
gravity boundary metric are essentially equal
— Explains (in part) why JT gravity is found in the limit
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Classical dilaton gravity and asymptotics (2)

Boundary behavior of fields:
Recall our field redefinition: ¢ = b='p— br® and x = b~ 1p+ brd
Liouville length can be written as: £ = [ eP?dt = [ ePe 0" ®dt
Using asymptotics from classical metric
. nb2r .
e, oo = limroioo \/JTW and dilaton
D(r)], oo = limr 4o r, we learn that:
» ( ~ ¢ where { is the length in the dt metric
— Liouville length £ and length £ measured in the dilaton
gravity boundary metric are essentially equal
— Explains (in part) why JT gravity is found in the limit
> ebx‘a ~lim, 5400 e2mb’r 400 = Matter sector needs to
be described by identity brane (i.e. ZZ) boundary condition,
which was used in the Liouville gravity calculations indeed

Liouville gravity as dilaton gravity Thomas Mertens



Poisson sigma model description (1)

How do we see the quantum group structure within this action?
First-order form of 2d dilaton gravity:

=1 [ d?x\/=g (PR + W(®)) =
[ [®dw+ W(P)ebe, A ep + X?(des + 25w A )]
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Poisson sigma model description (1)

How do we see the quantum group structure within this action?
First-order form of 2d dilaton gravity:

=1 [ d?x\/=g (PR + W(®)) =
[ [®dw+ W(P)ebe, A ep + X?(des + 25w A )]
The general Poisson sigma model is of the form: ikeda 93, schaller-Strobl ‘94
S= f (A,' AdX — %A,‘ VAN Aiji(X))
where A; is gauge connection, and X', i = 1..m coordinatize a
m-dimensional Poisson manifold target space:
{X\, X} = Pi(X), Pi=_pi,  g,pPlilptk =
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Poisson sigma model description (1)

How do we see the quantum group structure within this action?
First-order form of 2d dilaton gravity:

=1 [d*x/—g (ch-l- W(o)) =
[ [®dw+ W(P)ebe, A ep + X?(des + 25w A )]
The general Poisson sigma model is of the form: ikeda 93, schaller-Strobl ‘94
S= f (A,' AdX — %A,‘ VAN Aiji(X))
where A; is gauge connection, and X', i = 1..m coordinatize a
m-dimensional Poisson manifold target space:
{Xi’Xj}PB = Pi(X), Pi = —pii, Oy Pl Ptk =
Identifying A; = (ep, e1,w) and X' = (X, X1, ®)
— 2d dilaton gravity is a special case of the PS model:

w(Xx? a _ .a

(X0, x1} =W X2 X2} = XD
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Poisson sigma model description (1)

How do we see the quantum group structure within this action?
First-order form of 2d dilaton gravity:

=3 [ d®xv/=g (PR + W(®)) =
[ [®dw+ W(P)ebe, A ep + X?(des + 25w A )]
The general Poisson sigma model is of the form: ikeda 93, schaller-Strobl ‘94
S= f (A,' AdX — %A,‘ VAN Aiji(X))
where A; is gauge connection, and X', i = 1..m coordinatize a
m-dimensional Poisson manifold target space:
{X\, X} = Pi(X), Pi=_pi,  g,pPlilptk =
Identifying A; = (ep, e1,w) and X' = (X, X1, ®)
— 2d dilaton gravitzy is a special case of the PS model:
{X07xl}PB: W(ZX )’ {Xa7Xz}PB:63bXb
or with lightcone coordinates E* = —X% + X! and H = X2
{H, Ei}PB:iEi’ {ET E™ }og = W(H)

Liouville gravity as dilaton gravity Thomas Mertens
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Poisson algebra is “external” structure
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Poisson algebra is “external” structure = ldentify the Poisson
algebra with a symmetry algebra of the dynamical system
S=[ (A ANdXT— LA AAPI(X))

Non-linear symmetry transformation:

oX' = —EJ'PJ’, 0A; = —de; + Ajeka,-PkJ
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Poisson sigma model description (2)

Poisson algebra is “external” structure = ldentify the Poisson
algebra with a symmetry algebra of the dynamical system

S=[ (A ANdXT— LA AAPI(X))
Non-linear symmetry transformation:
OX = —eiji, 0A; = —de; + Ajeka,'ij

Conserved charges:

Q' = [dxd'Ximys = ... = — [T duAyj(u)PF(X(u))
with mxi(x) = % = —Ayj
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Poisson sigma model description (2)

Poisson algebra is “external” structure = ldentify the Poisson
algebra with a symmetry algebra of the dynamical system

S=[ (A ANdXT— LA AAPI(X))
Nor_1—|inear symmetry transformation:
oX' = —Eiji, 0A; = —de; + Ajeka,'ij

Conserved charges:

Q' = [dxd'Ximys = ... = — [T duAyj(u)PF(X(u))
with mxi(x) = % = —Ayj

Charge a|gebra: see e.g. Cattaneo-Felder '01
= {Q. @} =PI(Q)

— same as original Poisson algebra, but now realized as a
canonical phase-space algebra

Liouville gravity as dilaton gravity Thomas Mertens



Poisson sigma model description (3)

Upon quantization: [@i, @f} 2 /hls’f(@)
— possible ordering ambiguities in Poisson tensor fan-tm 21
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Poisson sigma model description (3)

Upon quantization: [@i, @f} 2 /hIS’J(@)
— possible ordering ambiguities in Poisson tensor fan-tm 21

For bosonic dilaton gravity = no issue
For N =1 dilaton supergravity = important difference!
— resulting algebra is unique (compatibility with Jacobi identity)
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Poisson sigma model description (3)

Upon quantization: [@i, @f} 2 /hIS’J(@)

— possible ordering ambiguities in Poisson tensor ran-tm 21

For bosonic dilaton gravity = no issue

For N =1 dilaton supergravity = important difference!

— resulting algebra is unique (compatibility with Jacobi identity)

Main statements:

» well-known: For W(H) = 2H, the charge algebra is the

s[(2,R) Lie algebra
Matches with BF description of JT gravity

Liouville gravity as dilaton gravity Thomas Mertens



Poisson sigma model description (3)

Upon quantization: [@i, @f} 2 /h,‘SU(@)
— possible ordering ambiguities in Poisson tensor ran-tm 21
For bosonic dilaton gravity = no issue
For N =1 dilaton supergravity = important difference!
— resulting algebra is unique (compatibility with Jacobi identity)
Main statements:
» well-known: For W(H) = 2H, the charge algebra is the
s[(2,R) Lie algebra
Matches with BF description of JT gravity
» new: For W(H) ~ sinh2wb®H, the charge algebra becomes
the g-deformed algebra U,(s((2,R))

Explains organization of Liouville gravity amplitudes in terms
of Uqy(sl(2,R))
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Poisson sigma model description (3)

Upon quantization: [éi, @J} 2 /hISU(@)
— possible ordering ambiguities in Poisson tensor ran-tm 21
For bosonic dilaton gravity = no issue
For N =1 dilaton supergravity = important difference!
— resulting algebra is unique (compatibility with Jacobi identity)
Main statements:
» well-known: For W(H) = 2H, the charge algebra is the
s[(2,R) Lie algebra
Matches with BF description of JT gravity
» new: For W(H) ~ sinh2wb®H, the charge algebra becomes
the g-deformed algebra U,(s((2,R))
Explains organization of Liouville gravity amplitudes in terms
of Uqy(sl(2,R))
» new: For prepotential u(H) ~ sinh27b?H in N = 1 dilaton
supergravity, the charge algebra becomes the g-deformed
algebra Ug(osp(1]2,R))

Liouville gravity as dilaton gravity Thomas Mertens



Deformation of JT and bigger picture (1)

Up to now: 2 dilaton potentials (~ ®, ~ sinh 27bh?®)
Next: understand bigger picture for generic dilaton potentials
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Deformation of JT and bigger picture (1)

Up to now: 2 dilaton potentials (~ ®, ~ sinh 27bh?®)
Next: understand bigger picture for generic dilaton potentials

Class of deformations of the JT potential: Maxfield Turiaci 20, itten 20
W(P) =20 + ) eje™®, T<a <21

Interpretable as gas of (elliptic) defects in JT
— Riemann surfaces with conical punctures
Leads to a deformed density of states p(k) — pgef(k)

Geometric picture: With boundary asymptotics of classical & = r
= Does not modify r — +o00 asymptotics of JT gravity:

Liouville gravity as dilaton gravity Thomas Mertens
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Deformation of JT and bigger picture (2)

Similar argument works when boundary operator insertions are
present:

p(k) — paer(k) only, the vertex functions (I''s) are the same
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Similar argument works when boundary operator insertions are
present:

p(k) — paer(k) only, the vertex functions (I''s) are the same
Intuition: Gas of defects does not reach the boundary where the
3-point vertices are located Fantv 21

Liouville i Thomas Mertens



Deformation of JT and bigger picture (2)

Similar argument works when boundary operator insertions are
present:
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Intuition: Gas of defects does not reach the boundary where the
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Back to Liouville gravity: sinh27b%® dilaton
potential has different asymptotics
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present:

p(k) — paer(k) only, the vertex functions (I''s) are the same
Intuition: Gas of defects does not reach the boundary where the
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Back to Liouville gravity: sinh27b%® dilaton
potential has different asymptotics

Geometric picture: Gas of defects reaches bdy
= Different vertex functions (Sp's)
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Deformation of JT and bigger picture (2)

Similar argument works when boundary operator insertions are
present:

p(k) — paer(k) only, the vertex functions (I''s) are the same
Intuition: Gas of defects does not reach the boundary where the
3-point vertices are located Fantv 21

Back to Liouville gravity: sinh27b%® dilaton
potential has different asymptotics

Geometric picture: Gas of defects reaches bdy
= Different vertex functions (Sp's)

Suggests classification of dilaton gravity models in different classes
depending on the asymptotics of the dilaton potential

Liouville dilaton gravity Thomas Mertens



» Observation 1: Fixed length amplitudes in Liouville gravity
have a JT limit where b — 0
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worldsheet genus expansion is reinterpreted as multi-universe
expansion
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» Observation 1: Fixed length amplitudes in Liouville gravity
have a JT limit where b — 0
Conceptual advantage: JT gravity embedded in string theory,
worldsheet genus expansion is reinterpreted as multi-universe
expansion

» Observation 2: Amplitudes display quantum group structure
Partial explanation from the Lagrangian perspective by
rewriting Liouville gravity as a dilaton gravity model with sinh
potential and using its Poisson-sigma model description
— no full understanding (yet)
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» Observation 1: Fixed length amplitudes in Liouville gravity
have a JT limit where b — 0
Conceptual advantage: JT gravity embedded in string theory,
worldsheet genus expansion is reinterpreted as multi-universe
expansion

» Observation 2: Amplitudes display quantum group structure
Partial explanation from the Lagrangian perspective by
rewriting Liouville gravity as a dilaton gravity model with sinh
potential and using its Poisson-sigma model description
— no full understanding (yet)

Can we obtain a more general understanding along these lines of
larger classes of 2d dilaton gravity models?
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» Observation 1: Fixed length amplitudes in Liouville gravity
have a JT limit where b — 0
Conceptual advantage: JT gravity embedded in string theory,
worldsheet genus expansion is reinterpreted as multi-universe
expansion

» Observation 2: Amplitudes display quantum group structure
Partial explanation from the Lagrangian perspective by
rewriting Liouville gravity as a dilaton gravity model with sinh
potential and using its Poisson-sigma model description
— no full understanding (yet)

Can we obtain a more general understanding along these lines of
larger classes of 2d dilaton gravity models?

Thank you!

Liouville gravity as dilaton gravity Thomas Mertens
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