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Introduction

Goal: study lower-dimensional models of quantum gravity:

Interesting class = 2d dilaton gravity models: Grumiller-Kummer-Vasilevich ’02

S = 1
16πG

∫
d2x

√
−g (ΦR +W (Φ)) + 1

8πG

∮
dτ

√
−γΦbdyK

JT gravity = specify to W (Φ) = −ΛΦ

SJT =
1

16πG

∫
d2x

√
−gΦ(R − Λ) +

1

8πG

∮
dτ

√
−γΦbdyK

Teitelboim ’83, Jackiw ’85

Negative cosmological constant Λ = −2 → AdS2 space

Features:
▶ Appears as near-horizon theory of near-extremal

higher-dimensional black holes
▶ Describes low-energy sector of all (known) SYK-like models
▶ With suitable boundary conditions, reduces to Schwarzian

action Almheiri-Polchinski ’15, Jensen ’16, Maldacena-Stanford-Yang ’16, Engelsöy-TM-Verlinde ’16

▶ Exactly solvable to large extent
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Review - JT disk partition function

Exact quantum solution of amplitudes:
∫ [Dgµν ][DΦ]

Vol(Diff) . . . e−SJT

Disk Partition function Cotler et al. ’16, Maldacena-Stanford ’16, Stanford-Witten ’17

Z (β) = =
∫ +∞
0 dk(k sinh 2πk)e−βk2

Energy variable E = k2, ρ(E ) = sinh 2π
√
E

AdS2 Euclidean holographic boundary with length = β, filled in by
path integrating over all metrics and dilatons

Thermodynamic limit (saddle):

ρ(E ) ∼ e2π
√
E ⇒

√
E = π

β

Matches with black hole first law (mass vs Hawking temperature)
for classical AdS2 JT black hole solution: Almheiri-Polchinski ’15

ds2 = −(r2 − r2h )dt
2 + dr2

r2−r2h
, Φ(r) = r
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Review - JT boundary two-point function

Boundary two-point function (of some boundary CFT matter
operators Oh(τ) coupled to gravity):
Bagrets-Altland-Kamenev ’16, ’17, TM-Turiaci-Verlinde ’17, ’18, Blommaert-TM-Verschelde ’18, Yang ’18,

Kitaev-Suh ’18, ’19, Iliesiu-Pufu-Verlinde-Wang ’19 ...〈
Oh(τ1)Oh(τ2)

〉
β
= τ2 τ1h =

∫ +∞

0
dk1(k1 sinh 2πk1)

∫ +∞

0
dk2(k2 sinh 2πk2)e

−τk2
1−(β−τ)k2

2
Γ
(
h ± ik1 ± ik2

)
Γ(2h)︸ ︷︷ ︸

vertex functions
(τ = τ2 − τ1)
± sign convention = take product of all cases

Generalization to multi-point functions and OTOCs possible
TM-Turiaci-Verlinde ’17, ’18
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JT gravity: summary

Importance of these calculations for gravity:

▶ Boundary correlators: interpretation in terms of gravitational
physics (shockwaves, complexity = volume, bulk
entanglement entropy, spectral occupation and Unruh heat
bath physics for bulk operators . . .) Maldacena-Stanford-Yang ’16,

Lam-TM-Turiaci-Verlinde ’18, Yang ’18, TM ’19, Blommaert-TM-Verschelde ’19, ’20 . . .

▶ Higher genus and multi-boundary amplitudes: important to
understand very-late time correlators, explain Page curve with
replica wormholes Saad-Shenker-Stanford ’19, Saad ’19,

Almheiri-Hartman-Maldacena-Shaghoulian-Tajdini ’19, Penington-Shenker-Stanford-Yang ’19

(not in this talk)

→ Would be interesting to extend our class of solvable models to
find out how generic these lessons are

GOAL: discuss 2d Liouville gravity amplitudes in same language
→ interpret as specific model of dilaton gravity

Liouville gravity as dilaton gravity Thomas Mertens 5 21
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Liouville gravity: definition

Liouville gravity = non-critical string = 2d matter CFT coupled to
gravity, or critical string with a 2d Liouville + matter + ghost CFT
Polyakov ’81, David ’88, Distler-Kawai ’89 . . .

Total action: SL + SM + Sgh
with conformal anomaly constraint cM + cL + cgh = 0

▶ Liouville action: SL = 1
4π

∫
Σ

[
(∇̂ϕ)2 + QR̂ϕ+ 4πµe2bϕ

]
Q = b + b−1, cL = 1 + 6Q2 > 25
Arises from conformal factor gµν = e2bϕĝµν of 2d gravity

▶ For most of talk: SM = arbitrary CFT with cM < 1
particular choice to keep in mind:
→ timelike Liouville CFT (Liouville with b → ib, ϕ → −iχ)

▶ Sgh is usual bc-ghost theory with cgh = −26
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▶ For most of talk: SM = arbitrary CFT with cM < 1
particular choice to keep in mind:
→ timelike Liouville CFT (Liouville with b → ib, ϕ → −iχ)

▶ Sgh is usual bc-ghost theory with cgh = −26

Liouville gravity as dilaton gravity Thomas Mertens 6 21



Liouville gravity: definition

Liouville gravity = non-critical string = 2d matter CFT coupled to
gravity, or critical string with a 2d Liouville + matter + ghost CFT
Polyakov ’81, David ’88, Distler-Kawai ’89 . . .

Total action: SL + SM + Sgh
with conformal anomaly constraint cM + cL + cgh = 0

▶ Liouville action: SL = 1
4π

∫
Σ

[
(∇̂ϕ)2 + QR̂ϕ+ 4πµe2bϕ

]
Q = b + b−1, cL = 1 + 6Q2 > 25
Arises from conformal factor gµν = e2bϕĝµν of 2d gravity
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Liouville gravity: Fixed-length boundaries

Phrase in same language as JT gravity:
−→ Reinterpret worldsheet topology as the 2d Euclidean spacetime
of a gravitational model

Interested in holography → 2d manifold with boundary of fixed
length β; in this talk only disk topology

Boundary conditions:

▶ When viewing the theory as 2d quantum gravity, Liouville field
related to metric gµν : ds

2 = e2bϕdzdz̄
⇒ Boundary length ≡ ℓ =

∮
ebϕ is fixed

= Fourier transform of FZZT-brane boundary (Neumann-like)

▶ Matter + ghost: vacuum brane boundary (Dirichlet)
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Disk partition function

ℓ

Fixed length amplitude:

Z (ℓ) ∼
∫∞
0 ds sinh(2πbs) sinh

(
2πs
b

)
e−ℓκ cosh(2πbs) κ ≡

√
µ√

sinπb2

▶ JT limit: b → 0, ℓ ∼ ℓJT
κb4

→ +∞ Saad-Shenker-Stanford ’19, TM-Turiaci ’20

Z (ℓ) →
∫∞
0 dk (k sinh 2πk) e−ℓJTk

2
, s = bk

▶ Back to full Liouville gravity, with interpretation of ℓ = β:

Z (β) ∼
∫∞
κ dE e−βEρ(E ), ρ(E ) = sinh

(
1
b2
arccoshE

κ

)
Thermodynamic limit (saddle):√

E 2 − κ2 = 1
b2β

IR: E = κ+ EJT ⇒
√
EJT ∼ β−1, the JT black hole first law

UV: E ∼ β−1

→ holographic UV/IR connection: not aAdS like JT gravity
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2
, s = bk

▶ Back to full Liouville gravity, with interpretation of ℓ = β:
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(
1
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κ

)
Thermodynamic limit (saddle):√
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IR: E = κ+ EJT ⇒
√
EJT ∼ β−1, the JT black hole first law

UV: E ∼ β−1

→ holographic UV/IR connection: not aAdS like JT gravity
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Boundary two-point function

Boundary tachyon vertex operator: Bβ = c ΦMeβϕ

−→ Matter primary ΦM gravitationally dressed by Liouville
operator eβϕ, and gauge-fixed

Boundary 2-pt function = ⟨BβBβ⟩ℓ1,ℓ2 = Bβ Bβ

ℓ1

ℓ2

=
∫ +∞
0 ds1ds2 ρ(s1) ρ(s2)e

−ℓ1κ cosh 2πbs1e−ℓ2κ cosh 2πbs2 Sb(βM±is1±is2)
Sb(2βM)

where ρ(s) = sinh(2πbs) sinh
(
2π
b s

)
and βM = b − β TM-Turiaci ’20

Technicality: Liouville piece =
〈
eβ1ϕ(x)eβ2ϕ(0)

〉
∼ δ(β1−β2)

|x |2∆β
Aβ1,β2

−→ δ(0) cancelled by modding out CKG
−→ Matter + ghost cancels out worldsheet coordinate dependence

JT limit (b → 0, βM = bh): Sb(bx) ∼ Γ(x):∫ +∞
0 dk1 dk2 (k1 sinh 2πk1) (k2 sinh 2πk2) e

−k2
1 ℓJT1 e−k2

2 ℓJT2 Γ(h±ik1±ik2)
Γ(2h)
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Group theory interpretation of JT gravity

Example: JT boundary two-point function:∫
dk1(k1 sinh 2πk1)

∫
dk2(k2 sinh 2πk2)e

−τk2
1−(β−τ)k2

2
Γ
(
h±ik1±ik2

)
Γ(2h)

→ Measure and energies match with Plancherel measure and
Casimir of continuous irreps of (modification of) SL(2,R)
→ Vertex function is 3j-symbol2 with two such continuous irreps
(states) and one discrete lowest weight irrep (operator):∫
dgRj1,m1n1(g)Rj2,m2n2(g)Rj3,m3n3(g) =

(
j1 j2 j3
m1m2m3

)(
j1 j2 j3
n1 n2 n3

)
where Rj ,mn(g) are group representation matrices = ⟨j ,m| g |j , n⟩
E.g. Wigner D-functions for SU(2)

Applied to our case:
∫
dx Rk1,00(x)Rh,00(x)Rk2,00(x)

Rk,00(x) = K2ik(e
x) are representation matrices in mixed

(parabolic) basis = Whittaker functions in math literature∫ +∞
−∞ dx K2ik1(e

x)e2hxK2ik2(e
x) ∼ Γ(h±ik1±ik2)

Γ(2h)

Explanation: 1st order SL(2,R) BF formulation of JT gravity
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Quantum group interpretation of Liouville gravity (1)

Liouville gravity amplitudes arise from (modification of)
Uq(sl(2,R)), q = eπib

2
(b → 0 ≡ q → 1 is undeformed algebra)

Continuous self-dual irreps Ponsot-Teschner ’99 . . .:
▶ Casimir operator Cs ≡ cosh 2πbs
▶ Plancherel measure: dµ(s) = ds sinh 2πbs sinh 2πs

b

Example: boundary two-point function:∫ +∞
0 ds1ds2 ρ(s1) ρ(s2)e

−ℓ1 cosh 2πbs1e−ℓ2 cosh 2πbs2 Sb(βM±is1±is2)
Sb(2βM)

Measure and energies again match with Plancherel measure and
Casimir operator
Parabolic matrix element of Uq(sl(2,R)) Rϵ

s,00(x) Kharchev et al. ’01:

eπi2sx
∫ +∞
−∞

dζ
(2πb)−2iζ/b−2is/b Sb(−iζ)Sb(−i2s − iζ)e−πiϵ(ζ2+2sζ)e2πiζx

Leads to correct vertex function as 3j-symbol with two such
insertions and one discrete rep insertion: TM-Turiaci ’20, Fan-TM ’21∫ +∞

−∞ dx Rϵ
s1,00

(x)Rϵ∗
s2,00

(x)e2βMπx ∼ Sb(βM±is1±is2)
Sb(2βM)
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Quantum group interpretation of Liouville gravity (2)

? Explanation by some q-BF formulation of Liouville gravity?
−→ Open problem, we will present a different gauge theory
perspective further on

Extension: N = 1 Liouville supergravity analogously has
Uq(osp(1|2,R)) quantum supergroup structure Fan-TM ’21

Proposal for parabolic representation matrix element for
Uq(osp(1|2,R)):

Rϵ,±
s,00(x) = eπisx

∫ +∞
−∞

dζ
(4πb)−2iζ/b−2is e

−πi ϵ
2
(ζ2+2sζ)eπiζx

× [SNS(−iζ)SR(−i2s − iζ)± SR(−iζ)SNS(−i2s − iζ)]

computed using representation theory of quantum supergroup

Liouville gravity as dilaton gravity Thomas Mertens 12 21
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Liouville gravity as a dilaton gravity model

Rewrite Liouville gravity as a dilaton gravity model with specific
potential Seiberg-Stanford (unpublished), TM-Turiaci ’20

Assumption: Describe matter as timelike Liouville:
S = SL[ϕ] + SM [χ]

SL[ϕ] =
1
4π

∫
Σ

[
(∇̂ϕ)2 + 4πµe2bϕ

]
SM [χ] = 1

4π

∫
Σ

[
−(∇̂χ)2 − 4πµe2bχ

]
Field redefinition: ϕ = b−1ρ− bπΦ and χ = b−1ρ+ bπΦ:

→ S = −
∫
∂Φ · ∂ρ+

∫
e2ρ(µe−2πb2Φ − µe2πb

2Φ)

Setting ds2 = e2ρdzdz̄ (R ∼ e−2ρ∂∂̄ρ) → first term =
∫ √

gRΦ
Second term = W (Φ) ∼ sinh

(
2πb2Φ

)
The limit for small b gives back JT gravity
⇒ Liouville gravity = sinh dilaton gravity

Liouville gravity as dilaton gravity Thomas Mertens 13 21
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S = SL[ϕ] + SM [χ]

SL[ϕ] =
1
4π

∫
Σ

[
(∇̂ϕ)2 + 4πµe2bϕ

]
SM [χ] = 1

4π

∫
Σ

[
−(∇̂χ)2 − 4πµe2bχ

]

Field redefinition: ϕ = b−1ρ− bπΦ and χ = b−1ρ+ bπΦ:

→ S = −
∫
∂Φ · ∂ρ+

∫
e2ρ(µe−2πb2Φ − µe2πb

2Φ)

Setting ds2 = e2ρdzdz̄ (R ∼ e−2ρ∂∂̄ρ) → first term =
∫ √

gRΦ
Second term = W (Φ) ∼ sinh

(
2πb2Φ

)
The limit for small b gives back JT gravity
⇒ Liouville gravity = sinh dilaton gravity
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Classical dilaton gravity and asymptotics (1)

Let’s now investigate holography in sinh dilaton gravity

General dilaton gravity: Gegenberg-Kunstatter-Louis-Martinez ’94, Witten ’20

S = 1
2

∫
d2x

√
−g(ΦR +W (Φ))

Up to bulk diffeo’s, the general classical solution can be written as:
ds2 = −A(r)dt2 + dr2

A(r) , Φ(r) = r with A(r) =
∫ r
rh
dr ′W (r ′)

Describes BH geometry with horizon at r = rh
and E = 1

2

∫W−1(4πTH)W (Φ)dΦ

Choosing W (Φ) ∼ sinh 2πb2Φ leads to
√
E 2 − κ2 = TH/b

2

→ matches with first law derived in semi-classical regime from disk
partition function

ds2 = − cosh 2πb2r−cosh 2πb2rh
2πb2 sinπb2

dt2 + 2πb2 sinπb2

cosh 2πb2r−cosh 2πb2rh
dr2

For r , rh ≪ 1/b2 we get JT black hole
For r → ∞, R ∼ e2πb

2r → Curvature singularity at the boundary
q-deformed holography?
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Classical dilaton gravity and asymptotics (2)

Boundary behavior of fields:
Recall our field redefinition: ϕ = b−1ρ− bπΦ and χ = b−1ρ+ bπΦ

Liouville length can be written as: ℓL ≡
∫
ebϕdt =

∫
eρe−πb2Φdt

Using asymptotics from classical metric

eρ|r→∞ = limr→+∞
eπb2r

√
πb2 sinπb2

and dilaton

Φ(r)|r→∞ = limr→+∞ r , we learn that:

▶ ℓL ∼ ℓ where ℓ is the length in the dt metric
→ Liouville length ℓL and length ℓ measured in the dilaton
gravity boundary metric are essentially equal
→ Explains (in part) why JT gravity is found in the limit

▶ ebχ
∣∣
∂
∼ limr→+∞ e2πb

2r → +∞ ⇒ Matter sector needs to
be described by identity brane (i.e. ZZ) boundary condition,
which was used in the Liouville gravity calculations indeed
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Poisson sigma model description (1)

How do we see the quantum group structure within this action?
First-order form of 2d dilaton gravity:
S = 1

2

∫
d2x

√
−g (ΦR +W (Φ)) =∫ [

Φ dω + 1
4W (Φ)ϵabea ∧ eb + X a(dea + ϵa

bω ∧ eb)
]

The general Poisson sigma model is of the form: Ikeda ’93, Schaller-Strobl ’94

S =
∫ (

Ai ∧ dX i − 1
2Ai ∧ AjP

ji (X )
)

where Ai is gauge connection, and X i , i = 1..m coordinatize a
m-dimensional Poisson manifold target space:{
X i ,X j

}
PB

= P ij(X ), P ij = −P ji , ∂ℓP
[ij |Pℓ|k] = 0

Identifying Ai = (e0, e1, ω) and X i = (X 0,X 1,Φ)
→ 2d dilaton gravity is a special case of the PS model:{
X 0,X 1

}
PB

= W (X 2)
2 ,

{
X a,X 2

}
PB

= ϵabX
b

or with lightcone coordinates E± ≡ −X 0 ± X 1 and H ≡ X 2:
{H,E±}

PB
= ±E±, {E+,E−}

PB
= W (H)

Liouville gravity as dilaton gravity Thomas Mertens 16 21
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Poisson sigma model description (2)

Poisson algebra is “external” structure

⇒ Identify the Poisson
algebra with a symmetry algebra of the dynamical system

S =
∫ (

Ai ∧ dX i − 1
2Ai ∧ AjP

ji (X )
)

Non-linear symmetry transformation:
δX i = −ϵjP

ji , δAi = −dϵi + Ajϵk∂iP
kj

Conserved charges:
Q i ≡

∫
dx δiX jπX j = . . . = −

∫ +∞
0 du A1j(u)P

ji (X (u))

with πX i (x) ≡ ∂L
∂(∂0X i )

= −A1i

charge algebra: see e.g. Cattaneo-Felder ’01

⇒
{
Q i ,Q j

}
= P ij(Q)

→ same as original Poisson algebra, but now realized as a
canonical phase-space algebra

Liouville gravity as dilaton gravity Thomas Mertens 17 21



Poisson sigma model description (2)

Poisson algebra is “external” structure ⇒ Identify the Poisson
algebra with a symmetry algebra of the dynamical system

S =
∫ (

Ai ∧ dX i − 1
2Ai ∧ AjP

ji (X )
)

Non-linear symmetry transformation:
δX i = −ϵjP

ji , δAi = −dϵi + Ajϵk∂iP
kj

Conserved charges:
Q i ≡

∫
dx δiX jπX j = . . . = −

∫ +∞
0 du A1j(u)P

ji (X (u))

with πX i (x) ≡ ∂L
∂(∂0X i )

= −A1i

charge algebra: see e.g. Cattaneo-Felder ’01

⇒
{
Q i ,Q j

}
= P ij(Q)

→ same as original Poisson algebra, but now realized as a
canonical phase-space algebra

Liouville gravity as dilaton gravity Thomas Mertens 17 21



Poisson sigma model description (2)

Poisson algebra is “external” structure ⇒ Identify the Poisson
algebra with a symmetry algebra of the dynamical system

S =
∫ (

Ai ∧ dX i − 1
2Ai ∧ AjP

ji (X )
)

Non-linear symmetry transformation:
δX i = −ϵjP

ji , δAi = −dϵi + Ajϵk∂iP
kj

Conserved charges:
Q i ≡

∫
dx δiX jπX j = . . . = −

∫ +∞
0 du A1j(u)P

ji (X (u))

with πX i (x) ≡ ∂L
∂(∂0X i )

= −A1i

charge algebra: see e.g. Cattaneo-Felder ’01

⇒
{
Q i ,Q j

}
= P ij(Q)

→ same as original Poisson algebra, but now realized as a
canonical phase-space algebra

Liouville gravity as dilaton gravity Thomas Mertens 17 21



Poisson sigma model description (2)

Poisson algebra is “external” structure ⇒ Identify the Poisson
algebra with a symmetry algebra of the dynamical system

S =
∫ (

Ai ∧ dX i − 1
2Ai ∧ AjP

ji (X )
)

Non-linear symmetry transformation:
δX i = −ϵjP

ji , δAi = −dϵi + Ajϵk∂iP
kj

Conserved charges:
Q i ≡

∫
dx δiX jπX j = . . . = −

∫ +∞
0 du A1j(u)P

ji (X (u))

with πX i (x) ≡ ∂L
∂(∂0X i )

= −A1i

charge algebra: see e.g. Cattaneo-Felder ’01

⇒
{
Q i ,Q j

}
= P ij(Q)

→ same as original Poisson algebra, but now realized as a
canonical phase-space algebra

Liouville gravity as dilaton gravity Thomas Mertens 17 21



Poisson sigma model description (2)

Poisson algebra is “external” structure ⇒ Identify the Poisson
algebra with a symmetry algebra of the dynamical system

S =
∫ (

Ai ∧ dX i − 1
2Ai ∧ AjP

ji (X )
)

Non-linear symmetry transformation:
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Poisson sigma model description (3)

Upon quantization:
[
Q̂ i , Q̂ j

]
?
= iℏP̂ ij(Q̂)

→ possible ordering ambiguities in Poisson tensor Fan-TM ’21

For bosonic dilaton gravity ⇒ no issue
For N = 1 dilaton supergravity ⇒ important difference!
→ resulting algebra is unique (compatibility with Jacobi identity)
Main statements:
▶ well-known: For W (H) = 2H, the charge algebra is the

sl(2,R) Lie algebra
Matches with BF description of JT gravity

▶ new: For W (H) ∼ sinh 2πb2H, the charge algebra becomes
the q-deformed algebra Uq(sl(2,R))
Explains organization of Liouville gravity amplitudes in terms
of Uq(sl(2,R))

▶ new: For prepotential u(H) ∼ sinh 2πb2H in N = 1 dilaton
supergravity, the charge algebra becomes the q-deformed
algebra Uq(osp(1|2,R))

Liouville gravity as dilaton gravity Thomas Mertens 18 21
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Deformation of JT and bigger picture (1)

Up to now: 2 dilaton potentials (∼ Φ, ∼ sinh 2πb2Φ)
Next: understand bigger picture for generic dilaton potentials

Class of deformations of the JT potential: Maxfield-Turiaci ’20, Witten ’20

W (Φ) = 2Φ +
∑

i ϵie
−αiΦ, π < αi < 2π

Interpretable as gas of (elliptic) defects in JT
→ Riemann surfaces with conical punctures
Leads to a deformed density of states ρ(k) → ρdef(k)

Geometric picture: With boundary asymptotics of classical Φ = r
⇒ Does not modify r → +∞ asymptotics of JT gravity:
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Deformation of JT and bigger picture (2)

Similar argument works when boundary operator insertions are
present: h

ρ(k) → ρdef(k) only, the vertex functions (Γ’s) are the same

Intuition: Gas of defects does not reach the boundary where the
3-point vertices are located Fan-TM ’21

Back to Liouville gravity: sinh 2πb2Φ dilaton
potential has different asymptotics
Geometric picture: Gas of defects reaches bdy
⇒ Different vertex functions (Sb’s)

bM

Suggests classification of dilaton gravity models in different classes
depending on the asymptotics of the dilaton potential
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Summary

▶ Observation 1: Fixed length amplitudes in Liouville gravity
have a JT limit where b → 0

Conceptual advantage: JT gravity embedded in string theory,
worldsheet genus expansion is reinterpreted as multi-universe
expansion

▶ Observation 2: Amplitudes display quantum group structure
Partial explanation from the Lagrangian perspective by
rewriting Liouville gravity as a dilaton gravity model with sinh
potential and using its Poisson-sigma model description
→ no full understanding (yet)

Can we obtain a more general understanding along these lines of
larger classes of 2d dilaton gravity models?

Thank you!
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