Review:

Black Hole Microstates in AdS

Francesco Benini

SISSA (Trieste)

EuroStrings 2022
Lyon, 25 April 2022

The AdS/CFT correspondence

provides a CONSISTENT and NON-PERTURBATIVE definition of QUANTUM GRAVITY in ANTI-DE-SITTER SPACE

Quantum Gravity in asymptotically-AdS spacetime

AdS/CFT

Ordinary QFT
living at conformal
boundary

Semiclassical Regime for Gravity

* In AdS:	Gravity is weakly coupled $\binom{$ AdS much larger }{ than Planck scale }	$\left.\begin{array}{c}\text { and close to Einstein gravity } \\ \text { scale of higher-derivative corr.'s } \\ \text { much higher than AdS scale }\end{array}\right)$
* In QFT:	large "central charge" $($ large $N)$	QFT is

Need to take advantage of non-perturbative methods in QFT:

- conformal bootstrap
- integrability (for certain CFT's)
- supersymmetric localization
- numerics (lattice and/or Montecarlo)
- ...

Review of recent developments in study of black holes in AdS: entropy and microstates

This topic has been extensively studied in asymptotically-flat spacetimes

* String theory reproduced the Bekenstein-Hawking entropy
[Strominger, Vafa 96] of BPS black holes in asymptotically-flat spacetimes

Since AdS/CFT grants us a fully non-perturbative definition of Quantum Gravity, it is interesting to study black hole entropy in AdS
AdS_{3} and AdS_{2} are special.
Here AdS_{d} with $d \geq 4$

Black Hole Entropy

$$
S_{\text {Bekenstein-Hawking }}=\frac{\text { Horizon Area }}{4 G_{N} \hbar / c^{3}}
$$

$\begin{array}{lll}\text { Black hole }= & \begin{array}{l}\text { Ensemble of states } \\ \text { in quantum gravity }\end{array} & \text { AdS/CFT }\end{array} \quad \begin{aligned} & \text { Ensemble of states } \\ & \text { in boundary QFT }\end{aligned}$
$S_{\text {micro }}=\log N_{\text {micro }}=\frac{\text { Area }}{4 G_{N}}+$ corrections: $\left\{\begin{array}{l}\text { perturbative } \\ \text { higher derivative } \\ \text { non-perturbative (classical sol's) } \\ \text { non-perturbative (branes) } \\ \ldots\end{array}\right.$

* Some caveats:
- Consider large black holes in AdS
- Boundary QFT captures all states in AdS
- SUSY, rather than thermal, entropy

Strategies

Count states in boundary QFT employing a grand canonical partition function

$$
\mathcal{I}(y)=\sum_{\text {states }} y^{Q}=\sum_{\text {charges } Q} d(Q) y^{Q}
$$

- Lorentzian: extract the degeneracy

$$
d(Q)=\frac{1}{2 \pi i} \oint \frac{d y}{y^{Q+1}} \mathcal{I}(y)=\oint d \Delta e^{\log \mathcal{I}(\Delta)-2 \pi i Q \Delta} \quad y=e^{2 \pi i \Delta}
$$

Assuming large degeneracies, saddle-point approximation \rightarrow Legendre transform

$$
\text { entropy } S=\log d(Q) \simeq \log \mathcal{I}(\Delta)-\left.2 \pi i Q \Delta\right|_{\Delta=\text { extremum }}
$$

- Euclidean:

$$
\mathcal{I}=Z_{M_{d-1} \times S^{1}} \stackrel{\text { AdS/CFT }}{=}
$$

Euclidean "gravitational path integral" with fixed boundary conditions

Partition function at strong coupling: very hard!

* Employ a SUSY partition function, or index: $\quad \mathcal{I}=\sum_{\text {states }}(-1)^{F} y^{Q}$

Ofter computable exactly with localization techniques Index counts BPS states: applicable to BPS black holes

* Does an index capture the full entropy? At least at leading order, yes!
[FB, Hristov, Zaffaroni 16]
[Boruch, Heydeman, Iliesiu, Turiaci 22]
\mathcal{I}-extremization: near-horizon AdS_{2} with $\mathfrak{s u}(1,1 \mid 1)$
Similar to asyptotically-flat black holes

Magnetically-charged

 BPS black holesin AdS_{4}

BPS Magnetically-Charged Black Holes in AdS_{4}

* Spherically symmetric, $\quad 4 \mathrm{~d} \mathcal{N}=2 U(1)^{4}$ gauged SUGRA (STU model) static black holes in uplift: 11d supergravity (M-theory) on $\mathrm{AdS}_{4} \times S^{7}$

$$
\begin{aligned}
& d s^{2}=-f(r) d t^{2}+\frac{1}{f(r)} d r^{2}+g(r) d s_{S^{2}}^{2} \\
& X^{i}=X^{i}(r) \quad F^{a=1,2,3,4}=\mathfrak{n}_{a} d \mathrm{vol}_{S^{2}} \quad \sum_{a=1}^{4} \mathfrak{n}_{a}=2
\end{aligned}
$$

[Cacciatori, Klemm 09]

Magnetic charge for an R-symmetry (+ possibly electric flavor charges \mathfrak{q}_{a} \& angular momentum)
BPS: $\quad 1 \mathrm{cplx}$ supercharge \mathcal{Q}
Bekenstein-Hawking entropy:

$$
S_{B H} \sim N^{\frac{3}{2}} \sqrt{\Lambda+\sqrt{\Lambda^{2}-4 \mathfrak{n}_{1} \mathfrak{n}_{2} \mathfrak{n}_{3} \mathfrak{n}_{4}}} \quad \Lambda=\sum_{a<b} \frac{\mathfrak{n}_{a} \mathfrak{n}_{b}}{2}-\sum_{a} \frac{\mathfrak{n}_{a}^{2}}{4}
$$

* Boundary theory: \quad 3d $\mathcal{N}=8$ ABJM gauge theory $U(N)_{1} \times U(N)_{-1}$ Boundary theory is topologically twisted

$$
\ell_{\mathrm{Ads}}^{2} / G_{N} \sim N^{\frac{3}{2}}
$$

Topologically Twisted Index

Grand canonical partition function at strong coupling: protected observable for $3 \mathrm{~d} \mathcal{N}=2$ SUSY gauge theories with R-symmetry

$$
Z_{\mathrm{TTI}}\left[y_{a}, \mathfrak{n}_{a}\right]=\operatorname{Tr}_{\mathcal{H}}(-1)^{F} e^{-\beta H} e^{i J^{a} A_{a}^{\text {bkgd }}}
$$

\mathcal{H} : Hilbert space of states on S^{2} with R-symmetry background (top. twist)
$\mathcal{Q}^{2}=H-m_{a}^{\mathrm{bkgd}} J^{a} \quad$ only BPS states with $\mathcal{Q}^{2}=0$ contribute
Complex fugacities:

$$
y_{a}=e^{i \Delta_{a}}=e^{i\left(A_{a}^{b k g}+i \beta m_{a}^{b \mathrm{kgd}}\right)}
$$

* Computable exactly with localization techniques. For ABJM:

$$
\begin{aligned}
Z=\frac{1}{(N!)^{2}} & \sum_{\mathfrak{m}, \tilde{\mathfrak{m}} \in \mathbb{Z}^{N}} \int_{\mathcal{C}} \prod_{i=1}^{N} \frac{d x_{i}}{2 \pi i x_{i}} \frac{d \tilde{x}_{i}}{2 \pi i \tilde{x}_{i}} x_{i}^{\mathfrak{m}_{i}} \tilde{x}_{i}^{-\tilde{\mathfrak{m}}_{i}} \times \prod_{i \neq j}^{N}\left(1-\frac{x_{i}}{x_{j}}\right)\left(1-\frac{\tilde{x}_{i}}{\tilde{x}_{j}}\right) \times \\
& \times \prod_{i, j=1}^{N} \prod_{a=1,2}\left(\frac{\sqrt{\frac{x_{i}}{\tilde{x}_{j}} y_{a}}}{1-\frac{x_{i}}{\tilde{x}_{j}} y_{a}}\right)^{\mathfrak{m}_{i}-\tilde{\mathfrak{m}}_{j}-\mathfrak{n}_{a}+1} \prod_{b=3,4}\left(\frac{\sqrt{\frac{\tilde{x}_{j}}{x_{i}} y_{b}}}{1-\frac{\tilde{x}_{j}}{x_{i}} y_{b}}\right)^{\tilde{\mathfrak{m}}_{j}-\mathfrak{m}_{i}-\mathfrak{n}_{b}+1}
\end{aligned}
$$

TT Index at Large N

* Compute contour integral as a multi-dimensional residue

Distribution of poles at large N : "Bethe Ansatz Equations"

$$
1=x_{i} \prod_{j=1}^{N} \frac{\left(1-y_{3} \frac{\frac{\tilde{x}_{j}}{x_{i}}}{x_{i}}\right)\left(1-y_{4} \frac{\tilde{x}_{j}}{x_{i}}\right)}{\left(1-y_{1}^{-1} \frac{\tilde{x}_{j}}{x_{i}}\right)\left(1-y_{2}^{-1} \frac{\tilde{x}_{j}}{x_{i}}\right)}=\tilde{x}_{j} \prod_{i=1}^{N} \frac{\left(1-y_{3} \frac{\frac{\tilde{x}_{j}}{x_{i}}}{x_{i}}\right)\left(1-y_{4} \frac{\tilde{x}_{j}}{x_{i}}\right)}{\left(1-y_{1}^{-1} \frac{\tilde{x}_{j}}{x_{i}}\right)\left(1-y_{2}^{-1} \frac{\tilde{x}_{j}}{x_{i}}\right)}
$$

From a numerical analysis, ansatz: $\quad \log x_{j}=\sqrt{N} t_{j}+i v_{j}$

* Use a continuous distribution of poles:

Partition Function and Entropy

Grand canonical partition function, at leading order in large N :

$$
\log Z_{\mathrm{TTI}}\left(\Delta_{a}, \mathfrak{n}_{a}\right)=-\frac{N^{3 / 2}}{3} \sqrt{2 \Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}} \sum_{a} \frac{\mathfrak{n}_{a}}{\Delta_{a}}+\ldots
$$

Here $y_{a}=e^{i \Delta_{a}}, \quad 0 \leq \Delta_{a} \leq 2 \pi \quad$ and $\quad \sum \Delta_{a}=2 \pi$.

Bekenstein-Hawking entropy from a (constrained) Legendre transform:

$$
\log Z\left(\Delta_{a}, \mathfrak{n}_{a}\right)-\left.i \Delta_{a} \mathfrak{q}_{a}\right|_{\Delta_{a}=c r i t}=S_{\mathrm{BH}}\left(\mathfrak{q}_{a}, \mathfrak{n}_{a}\right)
$$

* \mathcal{I}-extremization: dual to attractor mechanism in AdS_{4}
[Gauntlett, Martelli, Sparks 19][Hosseini, Zaffaroni 19]

Many Examples in Various Dimensions

* Similar strategies reproduce the Bekenstein-Hawking entropy of various types of BPS black holes in different dimensions from various indices:

BPS Kerr-Newman rotating black holes (possibly with electric and magnetic flavor charges)

superconformal indices

BPS black holes with
R-symmetry magnetic charge
(possibly rotating and with electric/magnetic flavor charges)

topologically twisted indices

(Partial) List of Examples

Magnetically-charged BPS black holes:

- in AdS_{4}, with addition of electric charges
[FB, Hristov, Zaffaroni 16] and/or angular momentum (only BHs)
[Hristov, Katmadas, Toldo 18]
- \quad with exotic horizon Σ_{g}
[FB, Zaffaroni 16][Closset, Kim 16]
in massive Type IIA on S^{6}
[Hosseini, Hristov, Passias 17][FB, Khachatryan, Milan 17]
- other QFTs and internal manifolds
[Hosseini, Zaffaroni 16]
- from M5-branes, within 3d-3d correspondence
[Dimofte, Gaiotto, Gukov 11]
[Gang, Kim, Pando Zayas 19][Bobev, Crichigno 19]
- in AdS_{5} with hyperbolic horizon
[Bae, Gang, Lee 19]
- in AdS_{6} with toric-Kahler or $\Sigma_{g_{1}} \times \Sigma_{g_{2}}$ horizon
[Hosseini, Yaakov, Zaffaroni 18]
[Crichigno, Jain, Willett 18][Suh 18] + Hristov, Passias, Fluder, Uhlemann]

Rotating Kerr-Newman BPS black holes:

- in AdS_{4} (only Cardy limit)
[Choi, Hwang, Kim 19][Nian, Pando Zayas 19]
- in AdS_{5} (see later) [many. . .]
- in AdS_{6} (only Cardy limit) [Choi, Kim 19]
- in AdS_{7} (only Cardy limit)
[Kantor, Papageorgakis, Richmond 19][Nahmgoong 19]

Other examples:

- black strings (holographic RG flows)
[Hosseini, Nedelin, Zaffaroni 16][Hosseini, Hristov, Tachikawa, Zaffaroni 20]
- spindles [Ferrero, Gauntlett, Perez Ipiña, Martelli, Sparks 20][Hosseini, Hristov, Zaffaroni 21] [see D.Martelli's talk]

Perturbative and Higher-Derivative Corrections

* In QFT, we can compute corrections to the TT index at large N.

Analytic computations turn out to be too difficult, \rightarrow resort to numerical evaluations and fitting:
[Liu, Pando Zayas, Rathee, Zhao 17]
[Bobev, Hong, Reys 22]

$$
\log Z_{0}=-\frac{N^{3 / 2}}{3} \sqrt{2 \Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}} \sum_{a} \frac{\mathfrak{n}_{a}}{\Delta_{a}}
$$

$$
\log Z=\log Z_{0}+\underbrace{N^{\frac{1}{2}} f_{1}\left(\Delta_{a}, \mathfrak{n}_{a}\right)}_{\text {higher deriv. }}-\underbrace{\frac{1}{2} \log N}_{\text {1-loop }}+f_{2}\left(\Delta_{a}, \mathfrak{n}_{a}\right)+\mathcal{O}\left(N^{-\frac{1}{2}}\right)
$$

In the specially symmetric case $\Delta_{a}=\frac{\pi}{2}$, and for generic k :
$\Rightarrow \quad S^{7} / \mathbb{Z}_{k}$

$$
\log Z=-\frac{\pi \sqrt{2 k}}{3} N^{\frac{3}{2}}+\frac{\pi}{\sqrt{2 k}} \frac{k^{2}+32}{24} N^{\frac{1}{2}}-\frac{1}{2} \log N+\ldots
$$

Perturbative 1-Loop Correction

* \log corrections to entropy have been extensively studied for asymptotically-flat black holes

Window into QG: 1-loop effect from matter fields in near-horizon region

* For AdS_{4} black holes: contribution from whole space
[Jeon, Lal 17]
[Liu, Pando Zayas, Rathee, Zhao 17]
Arbitrary genus:

$$
Z_{\Sigma_{g} \times S^{1}}\left(\mathfrak{n}_{a}, \Delta_{a}\right)=\ldots-\frac{1-g}{2} \log N+\ldots
$$

Computation in 11d SUGRA on $M_{4} \times S^{7}$:
(M_{4} is reg. Euclidean black hole)

- in odd dimensions, only zero-modes contribute
- examine fields of 11d SUGRA, including ghosts
- M_{4} is non-compact \rightarrow space of L^{2} harmonic forms $\mathcal{H}_{L^{2}}^{p}\left(M_{4}, \mathbb{R}\right)$ $\operatorname{dim}_{\text {reg }} \mathcal{H}_{L^{2}}^{p=2}=2(1-g)$

First Higher-Derivative Correction

* Add 4-derivative corrections to $4 \mathrm{~d} \mathcal{N}=2$ minimal gauged SUGRA

Higher-derivative couplings: Weyl multiplet, T-log multiplet

- Any solution to $2-\partial$ action is also a solution of $4-\partial$ action, and preserves same amount of SUSY (special to AdS_{4})

$$
\log Z=-\pi \mathcal{F}\left(A N^{\frac{3}{2}}+B N^{\frac{1}{2}}\right)+\pi(\mathcal{F}-\chi) C N^{\frac{1}{2}}
$$

- \mathcal{F}, χ depend on boundary geometry of asymtpotically-locally-AdS 4_{4} solution Mag. AdS BH: $\quad \mathcal{F}=(1-g) \quad \chi=2(1-g)$
- A, B, C depend on theory: fix them with selected localization computations $\mathrm{ABJM}_{k}: \quad A=\frac{\sqrt{2 k}}{3} \quad B=-\frac{k^{2}+8}{24 \sqrt{2 k}} \quad C=-\frac{1}{\sqrt{2 k}}$
* Grav. evaluation of TT index:

$$
\log Z_{\Sigma_{g} \times S^{1}}=-(1-g) \frac{\pi \sqrt{2 k}}{3}\left(N^{\frac{3}{2}}-\frac{32+k^{2}}{16 k} N^{\frac{1}{2}}\right)+\ldots
$$

* In order to address generic fugacities, need to add vector multiplets

Some interesting conjectures

[see V.Reys' talk]
By a very careful numerical analysis, conjecture for TT index of ABJM_{k}, to all perturbative orders in $\frac{1}{N^{1 / 2}}$:

$$
\begin{aligned}
\log Z_{S^{1} \times \Sigma_{\mathfrak{g} \neq 1}}= & -\frac{\sqrt{2 k \Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}}}{3} \sum_{a=1}^{4} \frac{\mathfrak{n}_{a}}{\Delta_{a}}\left(\hat{N}_{\Delta}^{\frac{3}{2}}-\frac{\mathfrak{c}_{a}}{k} \hat{N}_{\Delta}^{\frac{1}{2}}\right)-\frac{1-\mathfrak{g}}{2} \log \hat{N}_{\Delta} \\
& +f_{0}(k, \Delta, \mathfrak{n})+\mathcal{O}\left(e^{-\sqrt{N k}}\right)+\mathcal{O}\left(e^{-\sqrt{N / k}}\right)
\end{aligned}
$$

where

$$
\hat{N}_{\Delta}=N-\frac{k}{24}+\frac{\pi}{12 k} \sum_{a=1}^{4} \frac{1}{\Delta_{a}} \quad \mathfrak{c}_{a}=\frac{\prod_{b(\neq a)}\left(\Delta_{b}+\Delta_{a}\right)}{8 \Delta_{1} \Delta_{2} \Delta_{3} \Delta_{4}} \sum_{b(\neq a)} \Delta_{b}
$$

Some conjectures on the prepotential corrected to all higher-derivative orders, compatible with this formula, have also appeared.

Kerr-Newman rotating

BPS black holes

in AdS_{5}

Kerr-Newman BPS black holes in AdS_{5}

Rotating \& electrically-charged $\frac{\mathbf{1}}{\mathbf{1 6}}$-BPS black holes in AdS_{5} [Gutowski, Reall 04]
[Chong, Cvetic, Lu, Pope 05][Kunduri, Lucietti, Reall 06]

- Constructed in: $\quad 5 \mathrm{~d} \mathcal{N}=2 U(1)^{3}$ gauged SUGRA (STU model) or uplift to: 10 d type IIB SUGRA on $\mathrm{AdS}_{5} \times S^{5}$
- Angular momentum

Electric charges

Here: $\quad J_{1}, J_{2}$
Charges for $U(1)^{3} \subset S O(6): \quad R_{1}, R_{2}, R_{3}$

- SUSY (1 cplx supercharge \mathcal{Q})
- Bekenstein-Hawking entropy (S^{3} horizon):

$$
S_{\mathrm{BH}}=\frac{\text { Area }}{4 G_{N}}=\pi \sqrt{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}-2 N^{2}\left(J_{1}+J_{2}\right)}
$$

- Angular momenta, charges and entropy scale $\sim N^{2}$

4d Superconformal Index

- Dual boundary theory: $\quad 4 \mathrm{~d} \mathcal{N}=4 S U(N) \mathrm{SYM}$
* Superconformal index:

Counts (with sign) BPS states on $S^{3}=$ protected operators on flat space
Index of $\mathcal{N}=4 \mathrm{SYM}$:

$$
\mathcal{I}\left(p, q, y_{1}, y_{2}\right)=\operatorname{Tr}(-1)^{F} e^{-\beta\left\{\mathcal{Q}, \mathcal{Q}^{\dagger}\right\}} p^{J_{1}+\frac{1}{2} R_{3}} q^{J_{2}+\frac{1}{2} R_{3}} y_{1}^{\frac{1}{2}\left(R_{1}-R_{3}\right)} y_{2}^{\frac{1}{2}\left(R_{2}-R_{3}\right)}
$$

Write: $\quad p=e^{2 \pi i \tau} \quad q=e^{2 \pi i \sigma} \quad y_{a}=e^{2 \pi i \Delta_{a}}$
Introduce Δ_{3} such that: $\quad \Delta_{1}+\Delta_{2}+\Delta_{3}-\tau-\sigma \in \mathbb{Z}$

* Equals the Euclidean partition function on $S^{3} \times S^{1}$ with background flat connections:

$$
\mathcal{I}=Z_{S^{3} \times S^{1}}\left(\tau, \sigma, \Delta_{1}, \Delta_{2}\right)
$$

$$
\mathcal{I}=\kappa_{N} \oint_{\mathbb{T}^{\mathrm{rk}(G)}} \prod_{i=1}^{\mathrm{rk}(G)} \frac{d z_{i}}{2 \pi i z_{i}} \times \frac{\prod_{a=1}^{3} \prod_{\rho \in \mathfrak{R}_{\mathrm{adj}}} \widetilde{\Gamma}\left(\rho(u)+\Delta_{a} ; \tau, \sigma\right)}{\prod_{\alpha \in \mathfrak{g}} \widetilde{\Gamma}(\alpha(u) ; \tau, \sigma)}
$$

with

$$
z=e^{2 \pi i u} \quad \kappa_{N}=\frac{(p ; p)_{\infty}^{\mathrm{rk}(G)}(q ; q)_{\infty}^{\mathrm{rk}(G)}}{\left|\mathrm{Weyl}_{G}\right|} \quad \widetilde{\Gamma}(u ; \tau, \sigma)=\prod_{m, n=0}^{\infty} \frac{1-p^{m+1} q^{n+1} / z}{1-p^{m} q^{n} z}
$$

* Taking the large N limit turns out to be tricky...

One saddle point with $u_{i} \in \mathbb{R}$ found long ago
[Kinney, Maldacena, Minwalla, Raju 05] but it describes gas of gravitons in AdS_{5}, not black holes

- Many different approaches have been devised by now

Cardy Limit

* Integrand simplifies in a (high temperature) Cardy limit:
- angular chemical potentials $\tau, \sigma \rightarrow 0$ (with $\tau / \sigma \in \mathbb{R}_{+}$fixed)
- electric chemical potentials $\operatorname{Im} \Delta_{a} \rightarrow 0$ with $\mathbb{R e} \Delta_{a}$ fixed

$$
\mathcal{I}=Z_{S^{3} \times S^{1}} \underset{\tau, \sigma \rightarrow 0}{\simeq} \int d^{\mathrm{rk}(G)} u e^{\frac{i \pi}{6 \tau \sigma} V_{2}(u)+\frac{i \pi(\tau+\sigma)}{2 \tau \sigma} V_{1}(u)}
$$

$V_{1,2}(u)$: piecewise polynomial functions, that depends on gauge/matter rep.
[Di Pietro, Komargodski 14][Arabi Ardehali 15][Di Pietro, Honda 16]

* Next, take large N limit:

$$
\text { (here }[x]=x-\lceil x\rceil \text {) }
$$

$$
\log \mathcal{I}=-i \pi N^{2} \frac{\left[\Delta_{1}\right]\left[\Delta_{2}\right]\left[\Delta_{3}\right]}{\tau \sigma}+\ldots
$$

* (Constrained) Legendre transform reproduces Bekenstein-Hawking entropy:

$$
S_{\mathrm{BH}}=\log \mathcal{I}-\left.2 \pi i\left(\sum X_{a} \frac{R_{a}}{2}+2 \tau J\right)\right|_{\substack{\text { constrained } \\ \text { extremum }}}
$$

Cardy limit captures limit of: charges \gg central charge

Cardy limit can be studied at generic (small) N

* In 2d, Cardy limit follows from modular invariance
* In 4d no modular invariance, yet central charges control the Cardy limit Obtained by reduction on S^{1}, careful treatment of 3d EFT of massive and zero modes
- E.g., for the so-called "R-charge index", or "index on $2^{\text {nd }}$ sheet":

$$
\mathcal{I}=\operatorname{Tr} e^{-i \pi R} e^{-\beta\left\{\mathcal{Q}, \mathcal{Q}^{\dagger}\right\}} e^{2 \pi i \tau\left(J_{1}+\frac{1}{2} R\right)} e^{2 \pi i \sigma\left(J_{2}+\frac{1}{2} R\right)}
$$

where R is superconformal R -symmetry,

$$
\begin{aligned}
& \log \mathcal{I}=\frac{i \pi}{24 \tau \sigma}\left[\left(\operatorname{Tr} R^{3}-\operatorname{Tr} R\right)+(\tau+\sigma)\left(3 \operatorname{Tr} R^{3}-\operatorname{Tr} R\right)\right. \\
&\left.+(\tau+\sigma)^{2} 3 \operatorname{Tr} R^{3}-\left(\tau^{2}+\sigma^{2}\right) \operatorname{Tr} R\right]+\log \left|G_{1-\text { form }}\right|+\mathcal{O}(\tau)
\end{aligned}
$$

* Relax any limit on fugacities, only large N

This analysis reveals interesting non-perturbative corrections

Various tools:

- Bethe Ansatz formula

- Non-analytic extension
- Direct saddle-point approximation

Bethe Ansatz Formula for 4d Superconformal Index

Alternative formula: (set $\tau=\sigma$)

$$
\mathcal{I}=\sum_{u \in \mathfrak{M}_{\mathrm{BAE}}} \mathcal{Z}(u ; \Delta, \tau, \tau) H(u ; \Delta, \tau)^{-1}
$$

(1) $\mathfrak{M}_{\text {BAE }}$ are solutions to "Bethe Ansatz Equations" for $\operatorname{rk}(G)$ complexified holonomies $\left[u_{i}\right]$ living on a complex torus T_{τ}^{2} of modular parameter τ :
$\mathfrak{M}_{\text {BAE }}$:
$\operatorname{SU}(N) \mathcal{N}=4 \mathrm{SYM}$

$$
Q_{i}(u)=\prod_{a=1}^{3} \prod_{j=1}^{N} \frac{\theta\left(\Delta_{a}-u_{i j} ; \tau\right)}{\theta\left(\Delta_{a}+u_{i j} ; \tau\right)}=1
$$

$$
\begin{gathered}
u_{i j}= \\
u_{i}-u_{j} \neq 0
\end{gathered}
$$

Equations are defined on T_{τ}^{2} and are invariant under $S L(2, \mathbb{Z})$
(2) \mathcal{Z} : same integrand as in integral formula $\quad H$: Jacobian $\quad H=\operatorname{det}_{i j} \frac{\partial Q_{i}}{\partial u_{j}}$

* Discrete family of exact solutions

Labelled by $\{m, r\}$ with $m \cdot n=N$ and $r \in \mathbb{Z}_{n}$

- Basic solution $\{1,0\}: \quad u_{j} \sim \frac{\tau}{N} j$
- Other solutions - forming $S L(2, \mathbb{Z})$ orbits:

* Contrib. of BASIC sOLUTION reproduces Bekenstein-Hawking entropy:
[FB, Milan 18]

$$
\left.\lim _{N \rightarrow \infty} \mathcal{I}\left(\tau, \Delta_{1}, \Delta_{2}\right)\right|_{\substack{\text { BASIC } \\ \text { SOLUTION }}} \simeq \exp \left(-i \pi N^{2} \frac{\left[\Delta_{1}\right]_{\tau}\left[\Delta_{2}\right]_{\tau}\left[\Delta_{3}\right]_{\tau}}{\tau^{2}}\right)
$$

Large N limit is a discontinuous analytic function: Stokes phenomenon

$$
[\Delta]_{\tau} \equiv \Delta+n \quad \text { s.t. } \in \operatorname{STRIP}
$$

Non-Perturbative Corrections from QFT

Expansion of the index at large N :

$$
\mathcal{I}=\sum_{\text {solutions } \in \mathfrak{M}_{\mathrm{BAE}}} e^{\mathcal{O}\left(N^{2}\right)+\ldots}
$$

It looks like a semiclassical expansion

* Large N contribution of $\{m, r\}$ solutions (with fixed m, r):

$$
\begin{aligned}
\log \mathcal{I}_{\{m, r\}}= & -\underbrace{\frac{i \pi N^{2}}{m} \frac{\left[m \Delta_{1}\right]_{\check{\tau}}\left[m \Delta_{2}\right]_{\check{\tau}}\left[m \Delta_{3}\right]_{\check{\tau}}}{(m \tau+r)^{2}}}_{\text {on-shell action }}+\underbrace{\log N+\mathcal{O}(1)}_{\text {1-loop + higher-deriv. ? }} \\
& +\underbrace{\sum e^{\frac{2 \pi i N}{m}} \frac{\left[m \Delta_{a}\right]_{\check{\tau}}}{\check{\tau}}+\ldots}_{\text {Euclidean D3-branes }}+\ldots
\end{aligned}
$$

"Classical" Non-Perturbative Corrections

Fill-in bulk geometry for given boundary conditions
[Witten 98; Dijkgraaf, Maldacena, Moore, Verlinde 00]
[Maloney, Witten 07]

- \exists infinite family of complex Euclidean solutions (including orbifolds) of 10d type IIB supergravity
* SUSY, but not extremal, with correct boundary conditions
- (Renormalized) on-shell action $F_{\text {grav }}$ Reproduces $\mathcal{O}\left(N^{2}\right)$ contribution to $\log \mathcal{I}_{\{m, r\}}$

"Stringy" Non-Perturbative Corrections

* A class of non-perturbative corrections from Euclidean SUSY D3-branes wrapped on 10d geometry at the horizon

On-shell action:
[Aharony, FB, Mamroud, Milan 21]

* Effect of D3-brane corrections:

$$
\mathcal{I}=Z_{S^{3} \times S^{1}} \simeq e^{-F_{\mathrm{grav}}}+\sum_{k} e^{-F_{\mathrm{grav}}} e^{i k S_{\mathrm{D} 3}} \simeq \exp \{-\underbrace{F_{\mathrm{grav}}}_{\mathcal{O}\left(N^{2}\right)}+\sum_{k} \underbrace{e^{i k S_{\mathrm{D} 3}}}_{\mathcal{O}\left(e^{-N}\right)}\}
$$

* Criterium to retain a complex saddle:

$$
\mathbb{I m} S_{\mathrm{D} 3}>0 \quad \text { for all (SUSY) D3-brane embeddings }
$$

Violation implies "D3-brane condensation" towards some other saddle point. Expected to signal that complex saddle point does not contribute to the integral.

Perturbative and Higher-Derivative Corrections

Perturbative and higher-derivative corrections poorly understood in this example

* $\log N$ term in basic solution [David, Lezcano, Nian, Pando Zayas 21]

Can be reproduced by Kerr/CFT applied to near-horizon
Computation in Lorentizian signature and microcanonical ensemble
Solid in the Cardy limit
No contribution from the bulk

* $\mathcal{O}(1)$ terms or smaller

Expected 1-loop contribution from gas of gravitons in black hole background
[cfr. Kinney, Maldacena, Minwalla, Raju 05]
Higher derivative corrections?

* Why it is so difficult to find saddle points of the integral formula?

After some massaging, at large N
[Choi, Jeong, Kim, Lee 21]
saddle points with
uniform distribution of eigenvalues on
a parallelogram in the u-plane

Some Open Questions

- AdS Black hole entropy beyond SUSY
- Near-horizon JT gravity from field theory [cfr. Boruch, Heydeman, Iliesiu, Turiaci 22]
- Classification of Euclidean gravitational saddles

Multi-center black holes? [see C.Toldo's talk]

- Structure of higher-derivative corrections
- Relation to topological string?
- Resummation of contributions and phase transitions

