Review:

Black Hole Microstates in AdS

Francesco Benini

SISSA (Trieste)

EuroStrings 2022 Lyon, 25 April 2022

The AdS/CFT correspondence

provides a CONSISTENT and NON-PERTURBATIVE definition of QUANTUM GRAVITY in ANTI-DE-SITTER SPACE

Quantum Gravity in asymptotically-AdS spacetime

 $AdS/CFT \iff$

Ordinary QFT living at conformal boundary

Semiclassical Regime for Gravity

★ In AdS:

Gravity is weakly coupled

(AdS much larger)
(than Planck scale)

and close to Einstein gravity

(scale of higher-derivative corr.'s
much higher than AdS scale

★ In QFT:

large "central charge" $(large\ N)$

QFT is strongly coupled

Need to take advantage of non-perturbative methods in QFT:

- conformal bootstrap
- integrability (for certain CFT's)
- supersymmetric localization
- numerics (lattice and/or Montecarlo)
-

Review of recent developments in study of black holes in AdS: entropy and microstates

This topic has been extensively studied in asymptotically-flat spacetimes

★ String theory reproduced the Bekenstein-Hawking entropy of BPS black holes in asymptotically-flat spacetimes [Strominger, Vafa 96]

Since AdS/CFT grants us a fully non-perturbative definition of Quantum Gravity, it is interesting to study black hole entropy in AdS $\,$

 AdS_3 and AdS_2 are special.

Here AdS_d with $d \geq 4$

Black Hole Entropy

$$S_{\rm Bekenstein-Hawking} = \frac{{\rm Horizon~Area}}{4\,G_N\,\hbar/c^3}$$

[Bekenstein 72, 73, 74; Hawking 74, 75]

AdS/CFT Ensemble of states in boundary QFT

$$S_{
m micro} = \log N_{
m micro} = {{
m Area} \over 4\,G_N} + {\it corrections} :$$

perturbative $S_{\rm micro} = \log N_{\rm micro} = \frac{{\sf Area}}{4\,G_N} + corrections : \left\{ \begin{array}{l} {\sf higher \ derivative} \\ {\sf non-perturbative \ (classical \ sol's)} \\ {\sf non-perturbative \ (branes)} \end{array} \right.$

- Some caveats:
- Consider large black holes in AdS
- Boundary QFT captures all states in AdS
- SUSY, rather than thermal, entropy

Strategies

Count states in boundary QFT employing a grand canonical partition function

$$\mathcal{I}(y) = \sum_{\mathrm{states}} y^Q = \sum_{\mathrm{charges}\ Q} d(Q)\, y^Q$$

• Lorentzian: extract the degeneracy

$$d(Q) = \frac{1}{2\pi i} \oint \frac{dy}{y^{Q+1}} \, \mathcal{I}(y) = \oint d\Delta \ e^{\log \mathcal{I}(\Delta) - 2\pi i Q \Delta} \qquad y = e^{2\pi i \Delta}$$

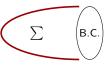
Assuming large degeneracies, saddle-point approximation \rightarrow Legendre transform

entropy
$$S = \log d(Q) \simeq \log \mathcal{I}(\Delta) - 2\pi i Q \Delta \Big|_{\Delta = \, \text{extremum}}$$

Euclidean:

$$\mathcal{I} = Z_{M_{d-1} \times S^1} \quad \overset{\text{AdS/CFT}}{=} \quad$$

Euclidean "gravitational path integral" with fixed boundary conditions



Partition function at strong coupling: very hard!

$$\mathcal{I} = \sum_{\text{states}} (-1)^F y^Q$$

Ofter computable exactly with localization techniques

Index counts BPS states: applicable to BPS black holes

Does an index capture the full entropy? At least at leading order, yes!

[FB, Hristov, Zaffaroni 16] [Boruch, Heydeman, Iliesiu, Turiaci 22]

 \mathcal{I} -extremization: near-horizon AdS₂ with $\mathfrak{su}(1,1|1)$

Similar to asyptotically-flat black holes

[Sen 09]

Magnetically-charged

BPS black holes

in AdS_4

BPS Magnetically-Charged Black Holes in AdS₄

Spherically symmetric, static black holes in

4d $\mathcal{N}=2~U(1)^4$ gauged SUGRA (STU model) uplift: 11d supergravity (M-theory) on $AdS_4 \times S^7$

$$ds^2=-f(r)\,dt^2+rac{1}{f(r)}\,dr^2+g(r)\,ds_{S^2}^2$$
 [Cacciatori, Klemm 09]
$$X^i=X^i(r) \qquad F^{a=1,2,3,4}=\mathfrak{n}_a\,d\mathrm{vol}_{S^2} \qquad \sum\nolimits_{a=1}^4\mathfrak{n}_a=2$$

Magnetic charge for an R-symmetry

(+ possibly electric flavor charges \mathfrak{q}_a & angular momentum)

BPS: 1 cplx supercharge Q

Bekenstein-Hawking entropy:

$$S_{BH}\,\sim\,N^{\frac{3}{2}}\sqrt{\Lambda+\sqrt{\Lambda^2-4\mathfrak{n}_1\mathfrak{n}_2\mathfrak{n}_3\mathfrak{n}_4}}\qquad \Lambda=\sum_{a}\frac{\mathfrak{n}_a\mathfrak{n}_b}{2}-\sum_{a}\frac{\mathfrak{n}_a^2}{4}$$

$$\Lambda = \sum_{a < b} \frac{\mathfrak{n}_a \mathfrak{n}_b}{2} - \sum_a \frac{\mathfrak{n}_a^2}{4}$$

3d $\mathcal{N}=8$ ABJM gauge theory $U(N)_1\times U(N)_{-1}$ Boundary theory:

Boundary theory is topologically twisted

$$\ell_{\mathsf{AdS}}^2/G_N \sim N^{\frac{3}{2}}$$

Grand canonical partition function at strong coupling: protected observable for 3d $\mathcal{N}=2$ SUSY gauge theories with R-symmetry

$$Z_{\mathsf{TTI}}[y_a, \mathfrak{n}_a] = \mathrm{Tr}_{\mathcal{H}} (-1)^F e^{-\beta H} e^{iJ^a A_a^{\mathsf{bkgd}}}$$

 \mathcal{H} : Hilbert space of states on S^2 with R-symmetry background (top. twist)

$$\mathcal{Q}^2 = H - m_a^{
m bkgd} J^a$$
 only BPS states with $\mathcal{Q}^2 = 0$ contribute

Complex fugacities:
$$y_a = e^{i\Delta_a} = e^{i(A_a^{\text{bkgd}} + i\beta m_a^{\text{bkgd}})}$$

★ Computable exactly with localization techniques. For ABJM:

$$Z = \frac{1}{(N!)^2} \sum_{\mathfrak{m}, \tilde{\mathfrak{m}} \in \mathbb{Z}^N} \int_{\mathcal{C}} \prod_{i=1}^{N} \frac{dx_i}{2\pi i x_i} \frac{d\tilde{x}_i}{2\pi i \tilde{x}_i} x_i^{\mathfrak{m}_i} \tilde{x}_i^{-\tilde{\mathfrak{m}}_i} \times \prod_{i \neq j}^{N} \left(1 - \frac{x_i}{x_j}\right) \left(1 - \frac{\tilde{x}_i}{\tilde{x}_j}\right) \times \\ \times \prod_{i,j=1}^{N} \prod_{a=1,2} \left(\frac{\sqrt{\frac{x_i}{\tilde{x}_j}} y_a}{1 - \frac{x_i}{\tilde{x}_j}} y_a\right)^{\mathfrak{m}_i - \tilde{\mathfrak{m}}_j - \mathfrak{n}_a + 1} \prod_{b=3,4} \left(\frac{\sqrt{\frac{\tilde{x}_j}{x_i}} y_b}{1 - \frac{\tilde{x}_j}{x_i}} y_b\right)^{\tilde{\mathfrak{m}}_j - \mathfrak{m}_i - \mathfrak{n}_b + 1}$$

Compute contour integral as a multi-dimensional residue

Distribution of poles at large N:

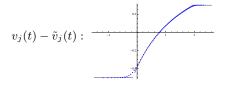
"Bethe Ansatz Equations"

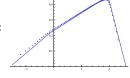
$$1 = x_i \prod_{j=1}^{N} \frac{\left(1 - y_3 \frac{\tilde{x}_j}{x_i}\right) \left(1 - y_4 \frac{\tilde{x}_j}{x_i}\right)}{\left(1 - y_1^{-1} \frac{\tilde{x}_j}{x_i}\right) \left(1 - y_2^{-1} \frac{\tilde{x}_j}{x_i}\right)} = \tilde{x}_j \prod_{i=1}^{N} \frac{\left(1 - y_3 \frac{\tilde{x}_j}{x_i}\right) \left(1 - y_4 \frac{\tilde{x}_j}{x_i}\right)}{\left(1 - y_1^{-1} \frac{\tilde{x}_j}{x_i}\right) \left(1 - y_2^{-1} \frac{\tilde{x}_j}{x_i}\right)}$$

From a numerical analysis, ansatz: $\log x_i = \sqrt{N} t_i + i v_i$

$$\log x_j = \sqrt{N} \, t_j + i \, v_j$$

Use a continuous distribution of poles:





Grand canonical partition function, at leading order in large N:

$$\log Z_{\mathsf{TTI}}(\Delta_a, \mathfrak{n}_a) = -\frac{N^{3/2}}{3} \sqrt{2\Delta_1 \Delta_2 \Delta_3 \Delta_4} \sum_a \frac{\mathfrak{n}_a}{\Delta_a} + \dots$$

Here $y_a=e^{i\Delta_a}$, $0\leq \Delta_a\leq 2\pi$ and $\sum \Delta_a=2\pi.$

Bekenstein-Hawking entropy from a (constrained) Legendre transform:

$$\log Z(\Delta_a, \mathfrak{n}_a) - i\Delta_a \mathfrak{q}_a \Big|_{\Delta_a = \mathsf{crit}} = S_{\mathsf{BH}}(\mathfrak{q}_a, \mathfrak{n}_a)$$

 \star *I*-extremization: dual to attractor mechanism in AdS₄

[Gauntlett, Martelli, Sparks 19][Hosseini, Zaffaroni 19]

[Kim, Kim 19][van Beest, Cizel, Schafer-Nameki, Sparks 20]

Many Examples in Various Dimensions

 Similar strategies reproduce the Bekenstein-Hawking entropy of various types of BPS black holes in different dimensions from various indices:

BPS Kerr-Newman rotating black holes

(possibly with electric and magnetic flavor charges)

 \downarrow

superconformal indices

BPS black holes with R-symmetry magnetic charge

(possibly rotating and with electric/magnetic flavor charges)

topologically twisted indices

(Partial) List of Examples

Magnetically-charged BPS black holes:

```
• in AdS<sub>4</sub>, with addition of electric charges [FB, Hristov, Zaffaroni 16] and/or angular momentum (only BHs) [Hristov, Katmadas, Toldo 18]
```

- $\qquad \qquad \text{with exotic horizon } \Sigma_g \qquad \qquad \text{[FB, Zaffaroni 16][Closset, Kim 16]}$
- $\qquad \qquad \text{in massive Type IIA on } S^6 \qquad \qquad \text{[Hosseini, Hristov, Passias 17][FB, Khachatryan, Milan 17]}$
- other QFTs and internal manifolds [Hosseini, Zaffaroni 16]
- from M5-branes, within 3d-3d correspondence [Dimofte, Gaiotto, Gukov 11] [Gang, Kim, Pando Zayas 19][Bobev, Crichigno 19]
- ullet in AdS $_5$ with hyperbolic horizon [Bae, Gang, Lee 19]
- in AdS $_6$ with toric-Kahler or $\Sigma_{g_1} \times \Sigma_{g_2}$ horizon [Hosseini, Yaakov, Zaffaroni 18] [Crichigno, Jain, Willett 18][Suh 18] + Hristov, Passias, Fluder, Uhlemann]

Rotating Kerr-Newman BPS black holes:

 in AdS₄ (only Cardy limit) [Choi, Hwang, Kim 19][Nian, Pando Zayas 19]

 in AdS₅ (see later) [many...]

 in AdS₆ (only Cardy limit) [Choi, Kim 19]

 in AdS₇ (only Cardy limit) [Kantor, Papageorgakis, Richmond 19][Nahmgoong 19]

Other examples:

black strings (holographic RG flows) [many...] [Hosseini, Nedelin, Zaffaroni 16][Hosseini, Hristov, Tachikawa, Zaffaroni 20]

spindles [Ferrero, Gauntlett, Perez Ipiña, Martelli, Sparks 20][Hosseini, Hristov, Zaffaroni 21] [see D.Martelli's talk]

Perturbative and Higher-Derivative Corrections

 \star In QFT, we can compute corrections to the TT index at large N.

Analytic computations turn out to be too difficult,

[Liu, Pando Zayas, Rathee, Zhao 17] [Bobev, Hong, Reys 22]

ightarrow resort to numerical evaluations and fitting:

$$\begin{split} \log Z_0 &= -\frac{N^{3/2}}{3} \sqrt{2\Delta_1 \Delta_2 \Delta_3 \Delta_4} \sum_a \frac{\mathfrak{n}_a}{\Delta_a} \\ \log Z &= \log Z_0 \ + \ \underbrace{N^{\frac{1}{2}} f_1(\Delta_a, \mathfrak{n}_a)}_{\text{higher deriv.}} \ - \ \underbrace{\frac{1}{2} \log N}_{\text{1-loop}} \ + \ f_2(\Delta_a, \mathfrak{n}_a) \ + \ \mathcal{O}\big(N^{-\frac{1}{2}}\big) \end{split}$$

In the specially symmetric case $\Delta_a=\frac{\pi}{2}$, and for generic k: $\Rightarrow S^7/\mathbb{Z}_k$

$$\log Z = -\frac{\pi\sqrt{2k}}{3}N^{\frac{3}{2}} + \frac{\pi}{\sqrt{2k}}\frac{k^2 + 32}{24}N^{\frac{1}{2}} - \frac{1}{2}\log N + \dots$$

★ log corrections to entropy have been extensively studied for asymptotically-flat black holes

[Sen 08]

Window into QG: 1-loop effect from matter fields in near-horizon region

★ For AdS₄ black holes: contribution from *whole space*

[Jeon, Lal 17]

[Liu, Pando Zayas, Rathee, Zhao 17]

Arbitrary genus:

$$Z_{\Sigma_g \times S^1}(\mathfrak{n}_a, \Delta_a) = \ldots - \frac{1-g}{2} \log N + \ldots$$

Computation in 11d SUGRA on $M_4 \times S^7$:

 $(M_4 \text{ is reg. Euclidean black hole})$

- in odd dimensions, only zero-modes contribute
- examine fields of 11d SUGRA, including ghosts
- M_4 is non-compact \to space of L^2 harmonic forms $\mathcal{H}^p_{L^2}(M_4,\mathbb{R})$ $\dim_{\mathrm{reg}}\mathcal{H}^{p=2}_{L^2}=2(1-g)$

- * Add 4-derivative corrections to 4d $\mathcal{N}=2$ minimal gauged SUGRA Higher-derivative couplings: Weyl multiplet, T-log multiplet
- Any solution to 2- ∂ action is also a solution of 4- ∂ action, and preserves same amount of SUSY (special to AdS₄)

$$\log Z = -\pi \mathcal{F} \left(A N^{\frac{3}{2}} + B N^{\frac{1}{2}} \right) + \pi \left(\mathcal{F} - \chi \right) C N^{\frac{1}{2}}$$

- \mathcal{F}, χ depend on boundary geometry of asymtpotically-locally-AdS $_4$ solution Mag. AdS BH: $\mathcal{F}=(1-g)$ $\chi=2(1-g)$
- A,B,C depend on theory: fix them with selected localization computations $ABJM_k$: $A=\frac{\sqrt{2k}}{3}$ $B=-\frac{k^2+8}{24\sqrt{2k}}$ $C=-\frac{1}{\sqrt{2k}}$
- ★ Grav. evaluation of TT index:

$$\log Z_{\Sigma_g \times S^1} = -(1-g) \frac{\pi \sqrt{2k}}{3} \left(N^{\frac{3}{2}} - \frac{32+k^2}{16k} N^{\frac{1}{2}} \right) + \dots$$

★ In order to address generic fugacities, need to add vector multiplets

Some interesting conjectures

[see V.Reys' talk]

By a very careful numerical analysis,

[Bobev, Hong, Reys 22]

conjecture for TT index of ABJM $_k$, to all perturbative orders in $\frac{1}{N^{1/2}}$:

$$\log Z_{S^1 \times \Sigma_{\mathfrak{g} \neq 1}} = -\frac{\sqrt{2k\Delta_1\Delta_2\Delta_3\Delta_4}}{3} \sum_{a=1}^4 \frac{\mathfrak{n}_a}{\Delta_a} \left(\hat{N}_{\Delta}^{\frac{3}{2}} - \frac{\mathfrak{c}_a}{k} \, \hat{N}_{\Delta}^{\frac{1}{2}} \right) - \frac{1-\mathfrak{g}}{2} \, \log \hat{N}_{\Delta}$$
$$+ f_0(k, \Delta, \mathfrak{n}) + \mathcal{O}(e^{-\sqrt{Nk}}) + \mathcal{O}(e^{-\sqrt{N/k}})$$

where

$$\hat{N}_{\Delta} = N - \frac{k}{24} + \frac{\pi}{12k} \sum_{a=1}^{4} \frac{1}{\Delta_a} \qquad \mathbf{c}_a = \frac{\prod_{b(\neq a)} (\Delta_b + \Delta_a)}{8\Delta_1 \Delta_2 \Delta_3 \Delta_4} \sum_{b(\neq a)} \Delta_b$$

Some conjectures on the prepotential corrected to all higher-derivative orders, compatible with this formula, have also appeared.

[Hristov 21/22]

Kerr-Newman rotating BPS black holes

in AdS₅

Kerr-Newman BPS black holes in AdS₅

Rotating & electrically-charged $\frac{1}{16}$ -BPS black holes in AdS₅ [Gutowski, Reall 04] [Chong, Cvetic, Lu, Pope 05][Kunduri, Lucietti, Reall 06]

- Constructed in: 5d ${\cal N}=2~U(1)^3$ gauged SUGRA (STU model)
 - or uplift to: 10d type IIB SUGRA on $AdS_5 \times S^5$
- Angular momentum Here: J_1, J_2 Electric charges Charges for $U(1)^3 \subset SO(6)$: R_1, R_2, R_3
 - Electric charges Charges for $U(1)^3 \subset SO(6)$: R_1, R_2, R_3
- SUSY (1 cplx supercharge Q)
- Bekenstein-Hawking entropy (S^3 horizon): $S_{\rm BH} = \frac{{\rm Area}}{4G_N} = \pi \sqrt{R_1R_2 + R_1R_3 + R_2R_3 2N^2(J_1 + J_2)}$
- ullet Angular momenta, charges and entropy scale $\sim N^2$

 $\bullet \quad \text{Dual boundary theory:} \qquad \text{4d } \mathcal{N} = 4 \,\, SU(N) \,\, \text{SYM}$

★ Superconformal index:

Counts (with sign) BPS states on $S^3 =$ protected operators on flat space

Index of $\mathcal{N}=4$ SYM:

$$\mathcal{I}(p,q,y_1,y_2) = \text{Tr}(-1)^F e^{-\beta\{\mathcal{Q},\mathcal{Q}^\dagger\}} p^{J_1 + \frac{1}{2}R_3} q^{J_2 + \frac{1}{2}R_3} y_1^{\frac{1}{2}(R_1 - R_3)} y_2^{\frac{1}{2}(R_2 - R_3)}$$

Write:
$$p=e^{2\pi i au}$$
 $q=e^{2\pi i \sigma}$ $y_a=e^{2\pi i \Delta_a}$

Introduce Δ_3 such that: $\Delta_1 + \Delta_2 + \Delta_3 - \tau - \sigma \in \mathbb{Z}$

 \star Equals the <u>Euclidean partition function</u> on $S^3 \times S^1$ with background flat connections: $\mathcal{I} = Z_{S^3 \times S^1}(\tau, \sigma, \Delta_1, \Delta_2)$

[Sundborg 99][Romelsberger 05][Kinney, Maldacena, Minwalla, Raju 05]

$$\mathcal{I} = \kappa_N \oint_{\mathbb{T}^{\mathrm{rk}(G)}} \prod_{i=1}^{\mathrm{rk}(G)} \frac{dz_i}{2\pi i z_i} \times \frac{\prod_{a=1}^{3} \prod_{\rho \in \mathfrak{R}_{\mathrm{adj}}} \widetilde{\Gamma} \left(\rho(u) + \Delta_a; \tau, \sigma \right)}{\prod_{\alpha \in \mathfrak{g}} \widetilde{\Gamma} \left(\alpha(u); \tau, \sigma \right)}$$

with

$$z=e^{2\pi i u} \qquad \kappa_N=\frac{(p;p)_{\infty}^{\mathrm{rk}(G)}(q;q)_{\infty}^{\mathrm{rk}(G)}}{|\mathsf{Weyl}_G|} \qquad \widetilde{\Gamma}(u;\tau,\sigma)=\prod_{m,n=0}^{\infty}\frac{1-p^{m+1}q^{n+1}/z}{1-p^mq^nz}$$

 \star Taking the large N limit turns out to be tricky...

One saddle point with $u_i\in\mathbb{R}$ found long ago [Kinney, Maldacena, Minwalla, Raju 05] but it describes gas of gravitons in AdS $_5$, not black holes

· Many different approaches have been devised by now

- ★ Integrand simplifies in a (high temperature) Cardy limit:
 - angular chemical potentials $\tau, \sigma \to 0$ (with $\tau/\sigma \in \mathbb{R}_+$ fixed)
 - electric chemical potentials $\operatorname{Im} \Delta_a \to 0$ with $\operatorname{Re} \Delta_a$ fixed

$$\mathcal{I} = Z_{S^3 \times S^1} \underset{\tau, \sigma \to 0}{\simeq} \int d^{\text{rk}(G)} u \ e^{\frac{i\pi}{6\tau\sigma} V_2(u) + \frac{i\pi(\tau + \sigma)}{2\tau\sigma} V_1(u)}$$

 $V_{1,2}(u)$: piecewise polynomial functions, that depends on gauge/matter rep.

[Di Pietro, Komargodski 14][Arabi Ardehali 15][Di Pietro, Honda 16]

* Next, take large
$$N$$
 limit:
$$\log \mathcal{I} = -i\pi N^2 \, \frac{[\Delta_1][\Delta_2][\Delta_3]}{\tau \, \sigma} + \dots$$

★ (Constrained) Legendre transform reproduces Bekenstein-Hawking entropy:

$$S_{\rm BH} = \log \mathcal{I} - 2\pi i \left(\sum X_a \frac{R_a}{2} + 2\tau J \right) \bigg|_{\begin{subarray}{c} \mbox{constrained} \\ \mbox{extremum} \end{subarray}} \bigg|_{\begin{subarray}{c} \mbox{c} \mbox{$$

Cardy limit captures limit of: charges ≫ central charge

Cardy limit can be studied at generic (small) N

- * In 2d, Cardy limit follows from modular invariance
- \star In 4d no modular invariance, yet central charges control the Cardy limit Obtained by reduction on S^1 , careful treatment of 3d EFT of massive and zero modes
- E.g., for the so-called "R-charge index", or "index on 2nd sheet":

$$\mathcal{I} = \text{Tr } e^{-i\pi R} e^{-\beta \{\mathcal{Q}, \mathcal{Q}^{\dagger}\}} e^{2\pi i \tau \left(J_1 + \frac{1}{2}R\right)} e^{2\pi i \sigma \left(J_2 + \frac{1}{2}R\right)}$$

where R is superconformal R-symmetry,

[Cassani, Komargodski 21]

[see also: Kim, Kim, Song 19; Cabo-Bizet, Cassani, Martelli, Murthy 19]
[Lezcano, Hong, Liu, Pando Zayas 20; Amariti, Fazzi, Segati 21]

[Arabi Ardehali, Murthy 21]

$$\log \mathcal{I} = \frac{i\pi}{24\tau\sigma} \left[\left(\operatorname{Tr} R^3 - \operatorname{Tr} R \right) + (\tau + \sigma) \left(3 \operatorname{Tr} R^3 - \operatorname{Tr} R \right) \right.$$
$$\left. + (\tau + \sigma)^2 3 \operatorname{Tr} R^3 - (\tau^2 + \sigma^2) \operatorname{Tr} R \right] + \log |G_{1\text{-form}}| + \mathcal{O}(\tau)$$

 $lacksymbol{k}$ Relax any limit on fugacities, only large N

This analysis reveals interesting non-perturbative corrections

Various tools:

- Bethe Ansatz formula
- Non-analytic extension
- Direct saddle-point approximation
-

Bethe Ansatz Formula for 4d Superconformal Index

Alternative formula: (set $\tau = \sigma$)

[Closset, Kim, Willett 17] [FB, Milan 18] [FB, Rizi 21]

$$\mathcal{I} = \sum_{u \in \mathfrak{M}_{\mathsf{BAE}}} \mathcal{Z}(u; \Delta, \tau, \tau) \ H(u; \Delta, \tau)^{-1}$$

• $\mathfrak{M}_{\mathsf{BAE}}$ are solutions to "Bethe Ansatz Equations" for $\mathrm{rk}(G)$ complexified holonomies $[u_i]$ living on a complex torus T^2_{τ} of modular parameter τ :

$$\mathfrak{M}_{\mathsf{BAE}}: \\ SU(N) \; \mathcal{N} = 4 \; \mathsf{SYM} \qquad \qquad Q_i(u) = \prod_{a=1}^3 \prod_{j=1}^N \frac{\theta(\Delta_a - u_{ij}; \tau)}{\theta(\Delta_a + u_{ij}; \tau)} = 1 \qquad \qquad u_{ij} = u_{ij} = 0$$

Equations are defined on T^2_{τ} and are invariant under $SL(2,\mathbb{Z})$

 $m{f 2}$: same integrand as in integral formula H : Jacobian $H=\det_{ij}rac{\partial Q_i}{\partial u_j}$

Labelled by $\{m,r\}$ with $m \cdot n = N$ and $r \in \mathbb{Z}_n$

- Basic solution $\{1,0\}$: $u_j \sim \frac{\tau}{N} j$
- ullet Other solutions forming $SL(2,\mathbb{Z})$ orbits:

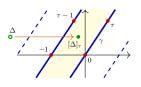
★ Contrib. of BASIC SOLUTION reproduces Bekenstein-Hawking entropy:

[FB, Milan 18]

$$\lim_{N \to \infty} \mathcal{I}(\tau, \Delta_1, \Delta_2) \Big|_{\substack{\text{BASIC} \\ \text{SOLUTION}}} \simeq \exp \left(-i\pi N^2 \frac{[\Delta_1]_{\tau} [\Delta_2]_{\tau} [\Delta_3]_{\tau}}{\tau^2} \right)$$

Large N limit is a discontinuous analytic function: Stokes phenomenon

$$[\Delta]_{\tau} \equiv \Delta + n$$
 s.t. \in Strip



Non-Perturbative Corrections from QFT

Expansion of the index at large N:

$$\mathcal{I} = \sum_{\mathsf{solutions} \, \in \, \mathfrak{M}_{\mathsf{BAF}}} e^{\mathcal{O}(N^2) \, + \, N}$$

It looks like a semiclassical expansion

★ Large N contribution of $\{m,r\}$ solutions (with fixed m,r):

$$\log \mathcal{I}_{\{m,r\}} = -\frac{i\pi N^2}{m} \frac{[m\Delta_1]_{\tilde{\tau}}[m\Delta_2]_{\tilde{\tau}}[m\Delta_3]_{\tilde{\tau}}}{(m\tau+r)^2} + \log N + \mathcal{O}(1)$$
 on-shell action 1-loop + higher-deriv. ?
$$+\sum_{\mathbf{Euclidean \ D3-branes}} e^{\frac{2\pi i N}{m} \frac{[m\Delta_a]_{\tilde{\tau}}}{\tilde{\tau}} + \cdots} + \ldots$$

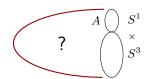
where $\check{\tau} = m\tau + r$

[Lezcano, Hong, Liu, Pando Zayas 20][Aharony, FB, Mamroud, Milan 21]

"Classical" Non-Perturbative Corrections

Fill-in bulk geometry for given boundary conditions

[Witten 98; Dijkgraaf, Maldacena, Moore, Verlinde 00] [Maloney, Witten 07]



- ∃ infinite family of complex Euclidean solutions (including orbifolds)
 of 10d type IIB supergravity
 - ★ SUSY, but *not* extremal, with correct boundary conditions

[Cabo-Bizet, Cassani, Martelli, Murthy 18] [Aharony, FB, Mamroud, Milan 21]

• (Renormalized) on-shell action F_{grav} Reproduces $\mathcal{O}(N^2)$ contribution to $\log \mathcal{I}_{\{m,r\}}$

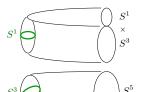
"Stringy" Non-Perturbative Corrections

 A class of non-perturbative corrections from Euclidean SUSY D3-branes wrapped on 10d geometry at the horizon

On-shell action:

$$S_{\rm D3} = 2\pi N\,\frac{\Delta_a^{\rm g}}{\tau^{\rm g}} \qquad {\rm or} \qquad S_{\rm D3} = 2\pi N\,\frac{\Delta_a^{\rm g}}{\sigma^{\rm g}} \label{eq:SD3}$$

[Aharony, FB, Mamroud, Milan 21]



★ Effect of D3-brane corrections:

$$\mathcal{I} = Z_{S^3 \times S^1} \simeq e^{-F_{\rm grav}} + \sum_k e^{-F_{\rm grav}} e^{ikS_{\rm D3}} \simeq \exp \left\{ -\underbrace{F_{\rm grav}}_{\mathcal{O}(N^2)} + \sum_k \underbrace{e^{ikS_{\rm D3}}}_{\mathcal{O}(e^{-N})} \right\}$$

★ Criterium to retain a complex saddle:

$$\operatorname{Im} S_{\mathsf{D3}} > 0$$
 for all (SUSY) D3-brane embeddings

Violation implies "D3-brane condensation" towards some other saddle point. Expected to signal that complex saddle point does *not* contribute to the integral.

Perturbative and Higher-Derivative Corrections

Perturbative and higher-derivative corrections poorly understood in this example

 $\star \log N$ term in BASIC SOLUTION

[David, Lezcano, Nian, Pando Zayas 21]

Can be reproduced by Kerr/CFT applied to near-horizon Computation in Lorentizian signature and microcanonical ensemble Solid in the Cardy limit

No contribution from the bulk

 \star $\mathcal{O}(1)$ terms or smaller

Expected 1-loop contribution from gas of gravitons in black hole background

[cfr. Kinney, Maldacena, Minwalla, Raju 05]

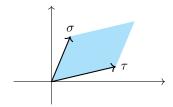
Higher derivative corrections?

[Melo, Santos 20][Bobev, Hristov, Reys 21]

★ Why it is so difficult to find saddle points of the integral formula?

After some massaging, at large N saddle points with uniform distribution of eigenvalues on a parallelogram in the u-plane

[Choi, Jeong, Kim, Lee 21]



Some Open Questions

- AdS Black hole entropy beyond SUSY
- Near-horizon JT gravity from field theory [cfr. Boruch, Heydeman, Iliesiu, Turiaci 22]
- Classification of Euclidean gravitational saddles
 Multi-center black holes? [see C.Toldo's talk]
- Structure of higher-derivative corrections
- Relation to topological string?
- Resummation of contributions and phase transitions