Bounds on KK spin-two fields

Alessandro Tomasiello

Università di Milano-Bicocca
based on 2104.12773 with G.B. De Luca,
2109.II560 + work in progress
with De Luca, N. De Ponti, A. Mondino

Eurostrings 2022, Lyon

Introduction

- KK spectrum: one of the most important piece of data associated to a compactification
- Full spectrum: relevant for holography
- Smallest masses: scale separation, massive graviton models
- Dimensional analysis:
 any two points in internal space

Hard to compute in general.

- gauge fixing; disentangling different spins; ...
\Rightarrow problem is reduced to eigenvalues of internal diff. operators

Example: Freund-Rubin

Table 5 review: [Duff, Nilsson, Pope '86]
Mass operators from the Freund-Rubin ansatz

Spin	Mass operator
2^{+}	$\Delta_{0} \leftarrow$ Laplace-Beltrami
$(3 / 2)^{(1),(2)}$	$\phi_{1 / 2}+7 m / 2$
$1^{-(1),(2)}$	$\Delta_{1}+12 m^{2} \pm 6 m\left(\Delta_{1}+4 m^{2}\right)^{1 / 2}$
1^{+}	Δ_{2}
$(1 / 2)^{(4),(1)}$	$\phi_{1 / 2}-9 m / 2$
Laplace-de Rham	
$(1 / 2)^{(3),(2)}$	$3 m / 2-\phi_{3 / 2}$
$0^{+(1),(3)}$	$\Delta_{0}+44 m^{2} \pm 12 m\left(\Delta_{0}+9 m^{2}\right)^{1 / 2}$
$0^{+(2)}$	$\Delta_{\mathrm{L}}-4 m^{2}$
$0^{-(1),(2)}$	$Q^{2}+6 m Q+8 m^{2}$
ichnerowicz	

- now compute somehow eigenvalues of these internal operators
- Homogeneous spaces
- Exceptional/generalized geometry:
[Kim, Romans, Van Nieuwenhuizen '85;
Fabbri, Fré, Gualtieri, Termonia '99;
Ceresole, Dall'Agata, D'Auria, Ferrara '99...]

Malek, Nicolai, Samtleben, '2o...]

Table 5
Mass operators from the Freund-Rubin ansatz

More generally for warped compactifications spin-two operator = weighted Laplacian

Spin	Mass operator
2^{+}	Δ_{0}
(3/2) ${ }^{(1),}$	- $41 / 2+7 m / 2$
$1^{-(1),(2)}$	$\Delta_{1}+12 m^{2} \pm 6 m\left(\Delta_{1}+4 m^{2}\right)^{1 / 2}$
1^{+}	Δ_{2}
$(1 / 2)^{(4),(1)}$	$\phi_{1 / 2}-9 m / 2$
$(1 / 2)^{(3),(2)}$	$3 \mathrm{~m} / 2-\phi_{3 / 2}$
$0^{+(1),(3)}$	$\Delta_{0}+44 m^{2} \pm 12 m\left(\Delta_{0}+9 m^{2}\right)^{1 / 2}$
$0^{+(2)}$	$\Delta_{L}-4 m^{2}$
$0^{-(1),(2)}$	$Q^{2}+6 m Q+8 m^{2}$

$$
\begin{gathered}
f=(D-2) A \\
\mathrm{~d} s_{D}^{2}=\mathrm{e}^{2 A}\left(\mathrm{~d} s_{d}^{2}+\underset{\text { warping }}{ } \quad \mathrm{d} s_{n}^{2}\right) \\
\text { internal } \\
\begin{array}{c}
\text { de-warped' } \\
\text { metric }
\end{array}
\end{gathered}
$$

- If we are interested in 'scale separation' $m_{\mathrm{KK}} \gg \sqrt{|\Lambda|}$, enough to focus on this spin-two tower
\Rightarrow no scale separation for susy AdS_{7}, AdS6

But:

- In the past, theorems existed only about Laplace-Beltrami

$$
\text { for example: Ricci positive definite } \Rightarrow \frac{\pi^{2}}{\text { diam }^{2}} \leqslant m_{1}^{2} \leqslant \frac{2 n(n+4)}{\text { diam }^{2}} \quad \begin{gathered}
\text { [Li, Yau " } 88] \\
\text { [Cheng } 75]
\end{gathered}
$$

- Unclear how the equations of motion would put a bound on Ricci

This talk: these two problems solve each other

- Ricci+warping combine in EoM in 'right' mathematical way
- Bakry-Émery geometry; optimal transport

Plan

- The Ricci bound
- The 'synthetic' view
- Theorems on eigenvalues
- Examples and applications

Ricci bound

Consider a higher-dimensional gravity $m_{D}^{D-2} \int \mathrm{~d}^{D} x \sqrt{-g_{D}} R_{D}+$ matter

$$
\begin{aligned}
& \text { and a compactification } \mathrm{d} s_{D}^{2}=\mathrm{e}^{2 A}\left(\mathrm{~d} s_{d}^{2}+\mathrm{d} s_{n}^{2}\right) \\
& \left.g_{M N} T\right) \equiv \hat{T}_{M N} \quad \begin{array}{c}
\text { max. } \uparrow \\
\text { symmetric }
\end{array} \begin{array}{c}
\text { 'de-warped' } \\
\text { internal }
\end{array}
\end{aligned}
$$

EoM: $R_{M N}=\frac{1}{2} m_{D}^{2-D}\left(T_{M N}-\frac{1}{D-2} g_{M N} T\right) \equiv \hat{T}_{M N}$
internal:

$$
\begin{aligned}
& \Lambda-\frac{1}{d} \hat{T}_{(d)} \quad \text { external } \\
& \|
\end{aligned}
$$

$$
R_{m n}+(D-2)\left(-\nabla_{m} \nabla_{n} A+\partial_{m} A \partial_{n} A\right)=\left((D-2)|\mathrm{d} A|^{2}+\underset{\text { sign? }}{\left.\nabla^{2} A\right)} g_{m n}+\hat{T}_{m n}\right.
$$

$$
=\Lambda g_{m n}+\frac{\left(\hat{T}_{m n}-\frac{1}{d} g_{m n} \hat{T}_{(d)}\right)}{\text { non-negative }}
$$

["Reduced
Energy
Condition"]

- for all bulk fields in type II and $d=11$ sugra
- for brane sources
"Bakry-Émery curvature":
[Bakry, Émery '85]
$R_{m i n}^{N, f} \equiv R_{m n}-\nabla_{m} \nabla_{n} f-\frac{1}{N-n} \partial_{m} f \partial_{n} f$
it appears naturally in a 'warped'
Raychaudhuri equation

$$
\begin{aligned}
& R_{\| n}^{N, f} \\
& R_{m n}+(D-2)\left(-\nabla_{m} \nabla_{n} A+\frac{|\mathrm{d} A|^{2} g_{m n}}{\left.\overline{\partial_{m} A \partial_{n} A}\right)} \geq \Lambda g_{m n}\right. \\
& R_{m n}^{\infty, f} \\
& R_{m n}-(D-2) \nabla_{m} \nabla_{n} A \geqslant-K g_{m n}
\end{aligned}
$$

$$
\begin{aligned}
& f=(D-2) A \\
& N=2-d<0 \\
& \text { actually still good! }
\end{aligned}
$$

$$
\sigma \geqslant(D-2)|\mathrm{d} A|
$$

'sup of the warping'

$$
K \equiv|\Lambda|+\frac{\sigma^{2}}{D-2}
$$

enough to derive eigenvalue bounds in the smooth case.

The 'synthetic' view

But: D-branes, O-planes \Rightarrow singularities

The field of optimal transport suggests a natural generalization:

$$
\begin{gathered}
R_{m n}^{N, f} \geq-K g_{m n} \longrightarrow " \mathrm{RCD}(-K, N) " \text { space } \\
R_{m n}^{\infty, f} \geq-K g_{m n} \longrightarrow \text { possibly singular! } \\
\end{gathered}
$$

- self-adjoint weighted Laplacian
- bounds on eigenvalues

RCD='Riemann-Curvature-
Dimension' condition
[Sturm 'o6; Lott, Villani 'o7;
Ambrosio, Gigli, Savaré I4]

Rough analogy

$$
f((1-t) x+t y) \leqslant(1-t) f(x)+t f(y)
$$

$$
R_{m n}-\nabla_{m} \partial_{n} f \geq 0 \quad \begin{gathered}
\begin{array}{c}
\text { generalize to } \\
\text { non-smooth manifolds: }
\end{array}
\end{gathered} \begin{gathered}
\operatorname{RCD}(0, \infty):
\end{gathered} \begin{gathered}
\text { [oversimplification!] } \\
\text { convexity of 'entropy' while } \\
\text { moving particles geodesically }
\end{gathered}
$$

In more detail:
$\forall \rho_{0}, \rho_{1}$ non-neg. such that $\int \rho_{i} \mathrm{e}^{f} \sqrt{g} \mathrm{~d}^{n} x=1 \quad$ ["probability distributions"]
$\exists \rho_{t}$ with the same property that connects them 'geodesically'
[a geodesic with respect to natural distance of probability distributions:
"Kantorovich-Wasserstein distance"]
and 'entropy' $-\int \rho \log \rho$ is convex on this path

Are string theory singularities RCD? $\begin{gathered}\text { DDe Luce, De Ponti, } \\ \text { Mondino, AT } 2 \mathrm{il}\end{gathered} \mathrm{d} s^{2}=\mathrm{e}^{2 A}\left(\mathrm{~d} s_{d}^{2}+\mathrm{d} s_{n}^{2}\right)$
[with usual caveats about supergravity singularities]
$\mathrm{d} x_{p+1-d}^{2}+H\left(\mathrm{~d} r^{2}+r^{2} \mathrm{~d} s_{s^{s-p}}^{2}\right)$
-D p-branes, $p \leq 5$:
[also M2, M5]
$\sigma \geqslant(D-2)|\mathrm{d} A|$
'sup of the warping'

$$
r=0 \text { at infinite distance! } \checkmark \quad \sigma<\infty .
$$

- D6:
math proof for exact solution; plausible in general.

$$
\sigma=\infty, \text { but } R_{m n}-8 \nabla_{m} \partial_{n} A \geq 0 \text { anyway. }
$$

- D7, D8:
math proof for exact solution; plausible in general. $\quad \sigma<\infty$.
- O p-planes:

$$
\begin{aligned}
& R_{m,}^{\infty, f}<0 \text { for } p \geqslant 5 ; \\
& R_{m n}^{2-a, f}<0 \text { for all } p
\end{aligned}
$$

$$
\text { likely } \in \operatorname{RCD}(-K, 2-d)
$$

Eigenvalue bounds

[De Luca, AT ${ }^{\prime 2}$ r] using [Hassannezhad ' ${ }^{2}$ 2]

- a bound in terms of the Planck masses $m_{D}, m_{d} \quad\left[M_{n}\right.$ smooth $]$

$$
D=d+n
$$

$$
m_{k}^{2} \leqslant \alpha \max \left\{\sigma^{2}, \frac{1}{n-1}\left(|\Lambda|+\frac{\sigma^{2}}{D-2}\right)\right\}+\beta\left(\frac{\left.k \frac{\sup \left(\mathrm{e}^{(D-2) A}\right)}{\int \mathrm{d}^{n} y \sqrt{\bar{g}_{n}} \mathrm{e}^{(D-2) A}}\right)^{2 / n}}{\left(m_{D}^{D-2} m_{d}^{2-d}\right)^{2 / n}}\right.
$$

doesn't exclude scale separation:
[Planck masses]
e.g. $\mathrm{AdS}_{4} \times S^{7} / \mathbb{Z}_{p} \rightarrow$ large second term
[Gautason, Schillo, Van Riet, Williams '15]
[Cribiori, Junghans, Van Hemelryck, Van Riet, Wrase ${ }^{\text {'2I }}$]

- bounds in terms of the diameter $d \quad\left[M_{n}\right.$ smooth $]$
[De Luca, AT ' 2 I] using [Setti '98,
Charalambous, Lu, Rowlett ' 14]

$$
m_{k}^{2} \leqslant n\left(|\Lambda|+\frac{D-1}{D-2} \sigma^{2}\right)+\gamma \frac{k^{2}}{d^{2}}
$$

$$
m_{1}^{2} \geqslant \frac{\pi^{2}}{d^{2}} \exp \left(-c(n) d \sqrt{|\Lambda|+\frac{\sigma^{2}}{D-2}}\right)
$$

likely to admit extension: RCD singularities, no σ

- bounds in terms of Cheeger constant
[De Luca, De Ponti,
Mondino, AT '2rı] 'min. of $\frac{\text { perimeter }}{\text { area }}$,

$$
h_{1}\left(M_{n}\right) \equiv \inf _{B} \frac{\int_{\partial B} \sqrt{\bar{g} \partial B} \mathrm{e}^{(D-2) A} \mathrm{~d}^{n-1} x}{\int_{B} \sqrt{\bar{g}} \mathrm{e}^{(D-2) A} \mathrm{~d}^{n} x}
$$

a space where h_{1} is small has a small 'neck':

- smallest mass: $\quad \frac{1}{4} h_{1}^{2} \leqslant m_{1}^{2} \leqslant \max \left\{\frac{21}{10} h_{1} \sqrt{K}, \frac{22}{5} h_{1}^{2}\right\}$

$$
\text { also for O-planes } \quad \text { [recall: includes D-branes] }
$$

adapting
[De Ponti, Mondino '19]

$$
K \equiv|\Lambda|+\frac{\sigma^{2}}{D-2}
$$

- higher masses: $\quad \frac{h_{k}^{2}}{C k^{6}}<m_{k}^{2}<600 k^{2} \max \left\{K, 2 \sqrt{K} h_{k}, 5 h_{k}^{2}\right\}$

$$
h_{k} \equiv \inf _{B_{0}, \ldots, B_{k}} \max _{0 \leqslant i \leqslant k} \frac{\int_{\partial B_{i}} \mathrm{e}^{f} \overline{\mathrm{dvol}}_{n-1}}{\int_{B_{i}} \mathrm{e}^{f} \mathrm{dvol}_{n}}
$$

a space where h_{2} is small (but not h_{3}):
here h_{1} small, h_{2} large:

- Application:
$m_{k}^{2}<600 k^{2} \max \left\{m_{1}^{2},|\Lambda|+\frac{\sigma^{2}}{D-2}\right\}$

$$
m_{1}^{2}>|\Lambda|+\frac{\sigma^{2}}{D-2} \Rightarrow m_{k}^{2}<600 k^{2} m_{1}^{2}
$$

If one lowers m_{1}^{2}, it drags down all the higher m_{k}^{2}

$|\Lambda|+\frac{\sigma^{2}}{D-2}$
$\Rightarrow \mathrm{KK}$ scale $\sim m_{1}$

- Non-compact analogues of these bounds also available for 'massive gravity' models
[Karch, Randall 'or; Bachas, Lavdas ' 18 8...]

Examples

- A large class of $\mathcal{N}=4$ IIB AdS_{4} vacua with a small 'neck':

Compactifications with light spin-two fields.

$$
\begin{array}{cl}
\text { Cheeger constant has } & \\
\text { a holographic interpretation: } & h_{1} \propto \frac{\mathcal{F}_{0}\left(\mathrm{CFT}_{4}\right)}{\mathcal{F}_{0}\left(\mathrm{CFT}_{3}\right)}
\end{array}
$$

- 'Twisted compactifications' on Riemann surfaces
$\mathrm{AdS}_{5} \times M_{6}$ in $d=11$ sugra dual to CFT_{6} on Σ_{g}
- Small neck in $\Sigma_{g} \Rightarrow$ small neck in $M_{6} \quad h_{k}\left(M_{6}\right)=h_{k}\left(\Sigma_{g}\right)$
top. $S^{4} \longrightarrow M_{6}$ \downarrow
\downarrow
Σ_{g}
- More explicit analysis: small masses $=$ Laplacian eigenvalues on Σ_{g} [contributions from S^{4} cannot be made small]
- Now recall pant decomposition [Fenchel-Nielsen coordinates on moduli space] as many necks as we want can be made arbitrarily small
e.g. we can make $h_{1}, \ldots h_{2 g-2}$ small

$$
\frac{h_{k}^{2}}{C k^{6}}<m_{k}^{2}<600 k^{2} \max \left\{K, 2 \sqrt{K} h_{k}, 5 h_{k}^{2}\right\} \quad \diamond
$$

tunable number of light spin-2 fields
here h_{1} small, h_{2} large:

'counterexample' to Spin-2 conjecture;
but we are now in regime beyond where it was expected to hold

Massive-AdS-graviton conjecture? $\quad \Rightarrow$ mass spacing $\sim\left(m_{1}^{2} m_{d}^{D-2}\right)^{\frac{1}{D+2}}$ in AdS units

Conclusions

- Smooth case: mass bounds in terms of 'volume' and diameter

$$
\text { [really } \left.\int \mathrm{d}^{n} y \sqrt{g_{n}} \mathrm{e}^{(D-2) A}\right]
$$

- With brane singularities: bounds in terms of Cheeger constant

$$
\text { e.g. } \quad \frac{h_{k}^{2}}{C k^{6}}<m_{k}^{2}<600 k^{2} \max \left\{K, 2 \sqrt{K} h_{k}, 5 h_{k}^{2}\right\}
$$

$$
K \equiv|\Lambda|+\frac{\sigma^{2}}{D-2}
$$

-Work in progress: eliminate K, include O-planes

- Any other 'simple' KK towers beyond spin-2?
- Is the appearance of optimal transport of deeper significance?
e.g. RG can be formulated in this language [Mondino, Suhr $\left.{ }^{\prime} 9 \mathrm{~m}\right]$

