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Introduction
• KK spectrum: one of the most important piece of data 

associated to a compactification

• Full spectrum: relevant for holography

[Lüst, Palti, Vafa ’19; 
Klaewer, Lüst, Palti ’18…]

• Dimensional analysis:

diameter: maximum distance between 
any two points in internal space

mKK ⇠ 1
diam(M) ⇠

1
(vol(M))1/n

internal 
dimension

[Kim, Romans, Van Nieuwenhuizen ’85; 
Fabbri, Fré, Gualtieri, Termonia ’99; 

Ceresole, Dall’Agata, D’Auria, Ferrara ’99…]

• Smallest masses: scale separation, massive graviton models



• gauge fixing; disentangling different spins; …

problem is reduced to eigenvalues 
of internal diff. operators

review: [Duff, Nilsson, Pope ’86]

Example: Freund–Rubin
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in (3.2.18) and (3.2.21). Recalling the caveat under which these results were obtained, we now return to
the modes specified in (5.1.55) and derive the mass matrix for the corresponding AdS fields. Starting
with the minus sign in (5.1.55), it follows from (5.1.53) and (5.1.56) that Vi(x) = 0. By means of (5.1.51)
and the decomposition of Vi~in (5.1.59) it can then be shown that in fact Vi~= ~ with the implication
that the ~m of .0 on M7 spinors must be excluded from the ~1) tower. In the case of the plus
sign in (5.1.55), we notice that the original gauge condition (5.1.43) can no longer be maintained since
Ftm 1.5mE is identically zero. Instead we pick the gauge Vi = 0, which leads to y’~”D4,,~= 0 and
(0+ 8my5),~= 0. Thus, these modes can be absorbed into the structure of the towers ~1) and ~4),

respectively.
The results of this section are collected in table 5. As in [80],the different towers of a given spin are

distinguished by superscripts. For fermions and pseudoscalars, the first (second) superscript refers to the
negative (positive) part of the spectrum of the relevant first-order operator, while for the bosonic towers
with superscripts the first (second) one corresponds to taking the minus (plus) sign in the expression for
the mass operator. Concerning these towers, there is the following caveat; although some fields are
obtained from perfectly respectable modes of some operators on M7, they should nevertheless be
omitted from the physical mass spectrum. These fields are in the 0~’~tower the 0 and 7m

2 eigenvalue
modes of 4~and in the ~1) tower the 7m/2 mode of .01/2. Note that for clarity, we have reinstated
subscripts on the differential operators on M

7 in table 5 indicating whether the operator acts on p-forms,
LI,,, second-rank symmetric transverse and traceless tensors,

4L, spinors, 01/2, or vector spinors, 03,2. It
remains only to compute the spectrum of these operators on the particular M

7 in question. We
emphasize that table 5 is equally applicable to both homogeneous and inhomogeneous spaces. (To date,
however, the mass spectrum hasbeen computed in full only for the round S

7 [34,80, 90, 194, 195, 279], as
discussed in section 7.2, and for the N(k, 1) spaces [197]as discussed in chapter 9. Partial results for the
squashed S7 of chapter 8 may be found in [65, 92, 198] and for the M(m, n) spaces of chapter 9 in [34,
35, 36, 199].)
We also point out that by setting m = 0 both in table 5 and in the caveat about excluded modes, we

obtain the result for a Kaluza—Klein reduction on a Ricci flat space. The massless sector is then
determined solely by the zero eigenvalue modes of the relevant operators on M

7, information about
which is provided by Betti numbers b,,, etc. It is, however, important to realize the only if the internal
space is Ricci flat is this the case. There is, however, a subtlety for spaces with non-zero b1. The classic
example is T

7 for which the spectrum is completely known (see section 9.1).
A number of comments on table 5 are now in order, recalling the properties of the operators given in

section 4.3.
Table 5

Mass operators from the Freund—Rubin ansatz

Spin Mass operator

+

(3/2)~~~’(2) 41,2 + 7m/2
~ (2) + 12m2±6m (41 + 4m2)’12

(1/2)~~~’(1) 41/2 — 9m/2
(1/2)~~~(2) 3m/2—
O~1~3) 4o+44m2± 12m(4

0+9m
2)’12

AL—4m2
O_(1)(2) ~2+ 6mQ+ 8m2

Laplace–Beltrami

Laplace–de Rham

Lichnerowicz

• now compute somehow eigenvalues of these internal operators

Hard to compute in general.

• Homogeneous spaces

• Exceptional/generalized geometry: [Malek, Samtleben, ’19;
Malek, Nicolai, Samtleben, ’20…]

[Kim, Romans, Van Nieuwenhuizen ’85; 
Fabbri, Fré, Gualtieri, Termonia ’99; 

Ceresole, Dall’Agata, D’Auria, Ferrara ’99…]
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respectively.
The results of this section are collected in table 5. As in [80],the different towers of a given spin are

distinguished by superscripts. For fermions and pseudoscalars, the first (second) superscript refers to the
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modes of 4~and in the ~1) tower the 7m/2 mode of .01/2. Note that for clarity, we have reinstated
subscripts on the differential operators on M

7 in table 5 indicating whether the operator acts on p-forms,
LI,,, second-rank symmetric transverse and traceless tensors,

4L, spinors, 01/2, or vector spinors, 03,2. It
remains only to compute the spectrum of these operators on the particular M
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emphasize that table 5 is equally applicable to both homogeneous and inhomogeneous spaces. (To date,
however, the mass spectrum hasbeen computed in full only for the round S

7 [34,80, 90, 194, 195, 279], as
discussed in section 7.2, and for the N(k, 1) spaces [197]as discussed in chapter 9. Partial results for the
squashed S7 of chapter 8 may be found in [65, 92, 198] and for the M(m, n) spaces of chapter 9 in [34,
35, 36, 199].)
We also point out that by setting m = 0 both in table 5 and in the caveat about excluded modes, we

obtain the result for a Kaluza—Klein reduction on a Ricci flat space. The massless sector is then
determined solely by the zero eigenvalue modes of the relevant operators on M

7, information about
which is provided by Betti numbers b,,, etc. It is, however, important to realize the only if the internal
space is Ricci flat is this the case. There is, however, a subtlety for spaces with non-zero b1. The classic
example is T

7 for which the spectrum is completely known (see section 9.1).
A number of comments on table 5 are now in order, recalling the properties of the operators given in

section 4.3.
Table 5

Mass operators from the Freund—Rubin ansatz

Spin Mass operator

+

(3/2)~~~’(2) 41,2 + 7m/2
~ (2) + 12m2±6m (41 + 4m2)’12

(1/2)~~~’(1) 41/2 — 9m/2
(1/2)~~~(2) 3m/2—
O~1~3) 4o+44m2± 12m(4

0+9m
2)’12

AL—4m2
O_(1)(2) ~2+ 6mQ+ 8m2

Spin-two fields: easiest operator

• Computed explicitly in several examples [Klebanov, Pufu, Rocha ’09; 
Richard, Terrisse, Tsimpis ’14; 

Passias, AT ’16; Pang, Rong, Varela ’17…]

• If we are interested in ‘scale separation’ mKK �
p

|⇤|,
enough to focus on this spin-two tower

[Apruzzi, De Luca, Gnecchi, Lo Monaco, AT ’19]
[Apruzzi, De Luca, Lo Monaco, Uhlemann ’21]no scale separation for susy AdS7, AdS6

More generally for warped compactifications 
spin-two operator =
weighted Laplacian

warping
internal

‘de-warped’
metric

[Csaki, Erlich, Hollowood, 
Shirman’00; Bachas, Estes ’11]

�f ( ) ⌘ � 1p
ḡ e

�f@m
�p

ḡḡmnef@n 
� f = (D � 2)A

total dimension

ds2D = e2A(ds2d + ds2n)



• In the past, theorems existed only about Laplace–Beltrami 
smallest mass

[Li, Yau ‘80]
[Cheng ‘75]

But:

• Unclear how the equations of motion would put a bound on Ricci attempts e.g. in
[Gautason, Schillo, Van Riet, Williams ’15]

This talk: these two problems solve each other

• Ricci+warping combine in EoM in ‘right’ mathematical way [De Luca, AT ’21]

• Bakry–Émery geometry; optimal transport
[Bakry, Émery ’85]

[Sturm ’06; Lott, Villani ’07; 
Ambrosio, Gigli, Savaré 14]

for example: Ricci positive definite ) ⇡2

4diam2 6 m2
1 6 2n(n+4)

diam2



Plan

• The Ricci bound

• Theorems on eigenvalues

• The ‘synthetic’ view

• Examples and applications



Ricci bound

and a compactification ds2D = e2A(ds2d + ds2n)

‘de-warped’
internal

max. 
symmetric

Consider a higher-dimensional gravity mD�2
D

R
dDx

p
�gDRD +matter

EoM: RMN = 1
2m

2�D
D

⇣
TMN � 1

D�2gMNT
⌘
⌘ T̂MN

sign?

non-negative [“Reduced 
Energy 

Condition”]• for all bulk fields in
type II and d = 11 sugra

• for brane sources

= ⇤gmn + (T̂mn � 1
dgmnT̂(d))

internal:
Rmn + (D � 2)(�rmrnA+ @mA@nA) = ((D � 2)|dA|2 +r2A)gmn + T̂mn

=

⇤� 1
d T̂(d) external



“Bakry–Émery curvature”:

enough to derive eigenvalue bounds in the smooth case.

[Bakry, Émery ‘85]

6

|dA|2gmn

Rmn + (D � 2)(�rmrnA+ @mA@nA) � ⇤gmn

RN,f
mn ⌘ Rmn �rmrnf � 1

N�n@mf@nf

=

RN,f
mn

N = 2� d< 0

f = (D � 2)A

actually still good!

� > (D � 2)|dA|
‘sup of the warping’

K ⌘ |⇤|+ �2

D�2

Rmn � (D � 2)rmrnA > �Kgmn

R1,f
mn

=
it appears naturally in a ‘warped’ 

Raychaudhuri equation



The ‘synthetic’ view
But: D-branes, O-planes singularities

• self-adjoint weighted Laplacian

• bounds on eigenvalues

The field of optimal transport suggests a natural generalization:

[Sturm ’06; Lott, Villani ’07; 
Ambrosio, Gigli, Savaré 14]

R1,f
mn � �Kgmn

RN,f
mn � �Kgmn

RCD=‘Riemann-Curvature-
Dimension’ condition

possibly singular!

“RCD(�K,1)” space

“RCD(�K,N)” space



Rough analogy
for functions of one variable:

In more detail:

[“probability distributions”]8 ⇢0, ⇢1 non-neg. such that
R
⇢ief

p
gdnx = 1

[a geodesic with respect to natural distance of probability distributions:
“Kantorovich–Wasserstein distance”]

9 ⇢t with the same property that connects them ‘geodesically’

and ‘entropy’ �
R
⇢ log ⇢ is convex on this path

generalize to 
non-smooth manifolds: convexity of ‘entropy’ while 

moving particles geodesically

RCD(0,1): [oversimplification!]

Rmn �rm@nf � 0

460 16 Displacement convexity I

t = 1
t = 0

t = 1/2

t = 0 t = 1

S = −
∫

ρ log ρ

Fig. 16.2. The lazy gas experiment: To go from state 0 to state 1, the lazy gas
uses a path of least action. In a nonnegatively curved world, the trajectories of the
particles first diverge, then converge, so that at intermediate times the gas can afford
to have a lower density (higher entropy).

Bibliographical notes

Convexity has been extensively studied in the Euclidean space [705]
and in Banach spaces [172, 324]. I am not aware of textbooks where
the study of convexity in more general geodesic spaces is developed,
although this notion is now quite frequently used (in the context of
optimal transport, see, e.g., [30, p. 50]).

The concept and terminology of displacement convexity were intro-
duced by McCann in the mid-nineties [614]. He identified (16.16) as the
basic criterion for convexity in P2(Rn), and also discussed other formu-
lations of this condition, which will be studied in the next chapter.
Inequality (16.16) was later rediscovered by several authors, in various
contexts.

figure from [Villani ’08]

generalize to 
non-smooth functions:

In both cases �2 is finite, thus implying a bounded Ricf . An explicit computation
shows that RicN,f is bounded as well. Both for M2s and M5s, the singularity is at
infinite distance. We summarize our results in Table 1.

RicN,f > K(n,N) > �1 �2 distance
0 6 p 65 X fin. 1
p = 6 X 1 fin.
p = 7, 8 X fin. fin.
M2/M5 X fin. 1

Table 1: Geometrical quantities in the transverse space for Dp-branes and M-branes.
Note N 2 (n,1]. As a consequence of S-duality, F1s and NS5s behave as D1 and D5
branes respectively.

D-brane metrics are of RCD(K,N) type, as we will prove in Section 3. More
precisely, for every N 2 (n,1] there exists K = K(n,N) > �1 such that the D-
brane is RCD(K,N) space. Notice that, outside the singularities, the D-brane is an
n-dimensional smooth weighted Riemannian manifold with N -Bakry–Émery Ricci cur-
vature bounded below by K = K(n,N) > �1. As a consequence of the discussion
above, these results also hold for fundamental strings, NS five branes, and M-branes in
M-theory.

2.3 Mathematical preliminaries

The aim of the following sections is to fix the notation and recall some basic construc-
tions in the theory of metric measure spaces which play a role in the statements and
the proofs of the mathematical results contained in the paper. In particular, we provide
a formal definition of the RCD(K,N) class and we clarify what we mean by Laplacian,
eigenvalues, Cheeger constants, in this general setting. A non-interested reader can skip
these parts, the only essential fact to keep in mind is that there is a way to properly
define all these notions for non-smooth spaces in such a way that they coincide with the
usual ones for (weighted) Riemannian manifolds, as discussed in the previous sections.

An oft-cited prototype for these ideas is convexity of a function f : R ! R. At the
differential level this can be of course formulated as @2

x

f > 0. But alternatively one can
write it as

f((1� t)x+ ty) 6 (1� t)f(x) + tf(y) (2.19)

for any t 2 [0, 1], x, y 2 R. While for smooth functions these two conditions are

10

convexity x

f

f 00 � 0



Are string theory singularities RCD?

expected to be resolved in the full quantum theory, but are a general feature of classical
limits. In ten-dimensional supergravities, Dp-branes are identified by a ten-dimensional
metric that, in Einstein frame, asymptotes to

ds2
10

⇠ H
p�7
8

�
dx2

p+1

+H(dr2 + r2ds2S8�p

)

�
for r ! 0 . (2.9)

Here dx2

p+1

denotes the p+1 dimensional space parallel to the brane, (i.e. the subspace
along which the object is extended for r ! 0) and r is a radial coordinate in the
transverse directions to the object. The function H is harmonic on the transverse space
and it is responsible for introducing the singularity we are concerned about. In vacuum
compactifications, a Dp-brane has to be extended along all the d vacuum directions in
order to preserve maximal symmetry, but in addition it can also extend among some of
the internal directions. From (2.9), we obtain that the barred metric (2.2) approaches

¯

ds
2

n

⇠ dx2

p+1�d

+H(dr2 + r2ds2S8�p

) for r ! 0 . (2.10)

Comparing with (2.2), we also read that the Bakry–Émery function f asymptotes to

e

f

= e

8A ⇠ H
p�7
2 for r ! 0 . (2.11)

Locally, the harmonic function behaves as

H ⇠
(

(r/r
0

)

p�7

1 < p < 7

�2⇡

g

s

log(r/r
0

) p = 7

for r ! 0 , (2.12)

where r7�p

0

= g
s

(2⇡l
s

)

7�p/((7�p)Vol(S8�p

)) for p < 7. To analyze how these singularities
affect the general results presented in Section 2.1, we first notice that in some cases the
gradient of the warping factor can be unbounded approaching the brane. Indeed, an
explicit computation in the geometry (2.10) gives

| ¯rf |2 = ḡrr@
r

f@
r

f = H�1

(@
r

f)2 =
(7� p)2

4

(H 0
)

2

H3

. (2.13)

This vanishes for p = 7 (since the warping approaches a constant) behaving in general
as

| ¯rf |2 ⇠ (7� p)4

4

r5�p . (2.14)

(2.14) is always bounded, except for D6 branes. Thus, the bound on Ricf in (2.4)
becomes then trivial approaching a D6-brane, since a diverging | ¯rf |2 results in an
infinite �2. However, for D6-branes we can check explicitly that RicN,f is still bounded
from below approaching the singularity, for any N > n, arguing as follows.

8

ds2 = e2A(ds2d + ds2n)⇠

� > (D � 2)|dA|
‘sup of the warping’•Dp-branes, p  5:

r = 0 at infinite distance! � < 1.X

[also M2,M5]

• D6:
math proof for exact solution; plausible in general.

� = 1, but Rmn � 8rm@nA � 0 anyway.

• D7, D8:

math proof for exact solution; plausible in general. � < 1.

[De Luca, De Ponti, 
Mondino, AT ‘21]

[with usual caveats about supergravity singularities]

RCD(K,N < 0)
[

RCD(K,1)
[

RCD(K,N > 0)

• Op-planes:

R1,f
mn < 0 for p > 5;

R2�d,f
mn < 0 for all p

[De Luca, De Ponti, 
Mondino, AT: WIP]

likely 2 RCD(�K, 2� d)



Eigenvalue bounds

doesn’t exclude scale separation:
[Gautason, Schillo, Van Riet, Williams ’15]
[Cribiori, Junghans, Van Hemelryck, 

Van Riet, Wrase ‘21]
e.g. AdS4 ⇥ S7/Zp ! large second term

(mD�2
D m2�d

d )2/n

=

[Planck masses]

� > (D � 2)|dA|
‘sup of the warping’

D = d+ n
total dimension

[De Luca, AT ’21]
using [Hassannezhad ’12]

• a bound in terms of the Planck masses mD, md

m2
k 6 ↵max

n

�2, 1
n�1

⇣

|⇤|+ �2

D�2

⌘o

+ �
⇣

k sup(e(D�2)A)R
dny

p
ḡn e(D�2)A

⌘2/n
[↵, �, � ⇠ 104]

[Mn smooth]

[De Luca, De Ponti, 
Mondino, AT: WIP]

[De Luca, AT ’21] using [Setti ’98, 
Charalambous, Lu, Rowlett ‘14]

m2
k 6 n

⇣
|⇤|+ D�1

D�2�
2
⌘
+ � k2

d2

• bounds in terms of the diameter d

m2
1 > ⇡2

d2 exp
⇣
�c(n) d

q
|⇤|+ �2

D�2

⌘

empirical bound on d among SE’s:
[ Collins, Jafferis, Vafa, Xu, Yau ‘22] 

likely to admit extension: RCD singularities, no �

[Mn smooth]



• bounds in terms of Cheeger constant

‘min. of perimeter
area ’

h1(Mn

) ⌘ inf
B

R
@B

p
ḡ@B e(D�2)A dn�1

xR
B

p
ḡ e(D�2)A dnx

has a small ‘neck’:
a space where h1 is small

• smallest mass:
adapting 

[De Ponti, Mondino ’19]

K ⌘ |⇤|+ �2

D�2

1
4h

2
1 6 m2

1 6 max
n

21
10h1

p
K, 22

5 h2
1

o

[De Luca, De Ponti, 
Mondino, AT ‘21]

• higher masses:

hk ⌘ infB0,...,Bk max06i6k

R
@Bi

efdvoln�1
R
Bi

efdvoln

h2
k

Ck6 < m2
k < 600k2 max

n

K, 2
p
Khk, 5h2

k

o

here h1 small, h2 large:a space where h2 is small
(but not h3):

RCD(K,1) sing.
[recall: includes D-branes]also for O-planes

[De Luca, De Ponti, 
Mondino, AT: WIP]• work in progress: extend upper bounds to RCD(�K, 2� d), get rid of �



m2
k < 600k2 max

n

m2
1, |⇤|+ �2

D�2

o• Application:

m2

k

m2
2

m2
1

m2
3

|⇤|+ �2

D�2

m2
1 > |⇤|+ �2

D�2
m2

k < 600k2m2
1

so far in agreement with the Spin-2 conjecture 

[Klaewer, Lüst, Palti ’18]
[de Rham, Heisenberg, Tolley ’18]

[Bachas ’19]
it was formulated with Minkowski vacua in mind;

reasonable that it holds far above |⇤|

) KK scale ⇠ m1

If one lowers m2
1,

it drags down all the higher m2
k

• Non-compact analogues of these bounds also available

for ‘massive gravity’ models
[Karch, Randall ’01; Bachas, Lavdas ’18…]



⇠=

Examples
• A large class of N = 4 IIB AdS4 vacua with a small ‘neck’:

[Bachas, Lavdas ’17, ’18]

CFT3

CFT4

CFT0
3

h1 / F0(CFT4)
F0(CFT3)

Cheeger constant has 
a holographic interpretation:

D5

NS5

Compactifications with light spin-two fields.



• ‘Twisted compactifications’ on Riemann surfaces

AdS5 ⇥M6 in d = 11 sugra top. S4 �
�

// M6

✏✏
⌃g

[Maldacena, Nuñez ’00]

dual to CFT6 on ⌃g

• Small neck in ⌃g ) small neck in M6

• More explicit analysis: small masses = Laplacian eigenvalues on ⌃g also follows from 
[Chen, Gutperle, Uhlemann ’19]

[contributions from S4 cannot be made small]

hk(M6) = hk(⌃g)

tunable number 
of light spin-2 fields 

h2
k

Ck6 < m2
k < 600k2 max

n

K, 2
p
Khk, 5h2

k

o

• Now recall pant decomposition [Fenchel–Nielsen coordinates on moduli space]

as many necks as we want can be made arbitrarily small

e.g. we can make h1, ... h2g�2 small



m2

k

m2
2

m2
3

|⇤|+ �2

D�2
m2

1

here h1 small, h2 large:

example where m1 very small,
but m2 doesn’t go down

‘counterexample’ to Spin-2 conjecture; 
but we are now in regime beyond where it was expected to hold [Klaewer, Lüst, Palti ’18]

in AdS unitsMassive-AdS-graviton conjecture?
[Bachas ’19]

) mass spacing ⇠ (m2
1m

D�2
d )

1
D+2



Conclusions
• Smooth case: mass bounds in terms of  ‘volume’ and diameter

• Is the appearance of optimal transport of deeper significance?

• With brane singularities: bounds in terms of Cheeger constant

[really
R

dny
p
gne(D�2)A]

h2
k

Ck6 < m2
k < 600k2 max

n

K, 2
p
Khk, 5h2

k

o

K ⌘ |⇤|+ �2

D�2

• Any other ‘simple’ KK towers beyond spin-2?

e.g.

•Work in progress: eliminate K, include O-planes

e.g. RG can be formulated in this language [Mondino, Suhr ’19]


