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Symmetries and M-theory

In the previous talk Clay has reviewed how Generalised Symmetries
appear in field theory, and why they are interesting.

Some of the most interesting field theories we know appear in
string theory, where we often have ways of reformulating the
questions (and answers) arising in field theory in terms of geometry.

The goal of my talk is to review how generalised symmetries are
encoded in the geometry of string constructions.

One virtue of doing this is that we’ll learn how to obtain the
symmetry structures for theories that do not have known
Lagrangians.

This is a very recent but very fast growing field, so I’ll only be able
to survey parts of it. Lakshya’s talk will cover some largely
complementary aspects.
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Some terminology

I am mostly interested in strongly coupled field theories, where we
lack a gauge theory description.

So for me, “symmetry” always means global symmetry, and
“anomaly” always means ’t Hooft anomaly of some global
symmetries.

Anomalies can then be “perturbative” or “non-perturbative”,
depending on whether you can detect them via Feynman diagram
computations or not.
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Refining the anomaly polynomial

It is a familiar fact that perturbative anomalies of a d-dimensional
QFT have an associated d+ 2 object: the anomaly polynomial.

A better way of thinking about this (which I will review) assigns a
d+ 1 theory to the anomaly, instead. This is known as the anomaly
theory. For local anomalies, the action of this theory is the
Chern-Simons action whose exterior derivative is the anomaly
polynomial, but the notion of anomaly theory includes
non-perturbative anomalies too.

I am not including all possible anomalies and symmetries here, only
internal ones. I don’t know how to include things like Weyl
anomalies in non-supersymmetric theories in this framework.
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Anomaly inflow
In fact, anomaly theories arise very naturally when model building
in M-theory:

Here the global anomalies of QFTd are gauge symmetries from the
point of view of M-theory, and we say that the full theory is
anomaly free, even if QFTd is anomalous, because there is anomaly
inflow.

If C11−d is a cone (as is often the case in interesting examples) we
can simplify the picture by integrating over the base of the cone,
and we obtain anomaly inflow from a d+ 1 dimensional theory.
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Symmetry inflow

I will sketch how integration on the base of the cone in M-theory
does not quite produce an anomaly theory, but rather a symmetry
theory, and object that includes information about all [*] possible
theories QFTd living on the singular point, and their anomalies.

[*] (What the local geometry gives us is the local dynamics of the
theory, but multiple global forms of the theory can be compatible
with that structure. As an example, SU(2) N = 4 vs SO(3)
N = 4.)

At the level of perturbative anomalies there is not much distinction,
but the difference is crucial in resolving some puzzles when dealing
with generalised symmetries, which are often discrete, and therefore
only have non-perturbative anomalies.
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What are anomalies?

The textbook view on anomalies is that anomalies arise whenever
we have a symmetry of the classical Lagrangian that is not a
symmetry of the full quantum theory.

This is a problem whenever we are talking about gauge
transformations: if a gauge transformation is anomalous then the
theory is inconsistent. (For global symmetries anomalies are a good
thing, they tell us information about the theory.)
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Anomalies and the partition function

One concise way to state the problem is that it might not be
possible to define the phase of the partition function in a well
defined way, as a function of the background fields modulo gauge
invariance:

Z[Ag] = eiA(A,g)Z[A] .

[Dai, Freed ’94] provide an alternative (anomaly inflow) viewpoint on this
phase factor that is very fruitful.
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The Dai-Freed viewpoint on anomalies

Consider the case that your space-time Xd is the boundary of some
manifold Yd+1, over which all the relevant structures on Xd extend.

We define the path integral of a fermion ψ on Xd as [Dai, Freed ’04]

Zψ = |Zψ|e−2πi η(DYd+1 )

with

η(DYd+1) =
dim kerDYd+1 +

∑
λ6=0 sign(λ)

2
.

[*] For the experts, this is the same η that appears in the APS index theorem.
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Why is this prescription useful
The η invariant is, in general, very difficult to compute. We only
know expressions for it in a handful of examples.

Nevertheless, it has very nice properties: if we change the
orientation of the manifold the phase of the partition function
changes sign:

e2πi η(DA) = e−2πi η(DA)

and it is “local”, in the sense that η behaves nicely under gluing:

e2πiη(DA)e2πi η(DB) = e2πi η(DA+B)
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The Dai-Freed viewpoint on anomalies
Anomalies, in this language, come from situations in which the
phase of the partition function depends on the choice of Yd+1:

e−2πi η(DYd+1 ) 6= e
−2πi η(DY ′

d+1
)

even if ∂Yd+1 = ∂Y ′d+1 = Xd.

Gluing Yd+1 and Y ′d+1 over Xd to form the closed manifold Wd+1,
we find that the partition function is well defined as a function of
the fields on Xd only if on every such Wd+1

e−2πi η(DWd+1 ) = e−2πi η(DYd+1 )/e
−2πi η(DY ′

d+1
)

= 1
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The Dai-Freed viewpoint on anomalies

The theory with partition function

ZA(Yd+1, A) = e2πi η(DA)

is an example of a topological field theory in (d+ 1)-dimensions,
known in this context as the anomaly theory.

(Note: this is a
classical theory for the background field A.)

We say that a theory in d-dimensions is anomaly-free if its
associated anomaly theory (defined in (d+ 1)-dimensions) is trivial.

So when talking about anomalies, it is very natural to consider
topological theories in one dimension higher. Later on I will give
examples of anomaly theories for 1-form symmetries.
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Classifying N = 4 theories

Known N = 4 theories in four dimensions are classified by a choice
of gauge group G (with algebra g), and some discrete θ angles.
[Aharony, Seiberg, Tachikawa ’13]

A prototypical example is su(2)→ {SU(2), SO(3)± = (SU(2)/Z2)±}.
[Gaiotto, Moore, Neitzke ’10]

One can distinguish the different global forms by studying the partition
function on four-manifoldsM4 with H2(M4, C) 6= 0, or by studying the
properties and correlators of extended operators.
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Classifying N = 4 theories

When computing the partition function of a N = 4 theory on some
closed manifoldM4 we do:

ZN=4[M4, ·] =
∑
[F ]

∫
[DA][Dλ][DΦ]e−Sg[τ,A,λ,Φ]

where [F ] denotes the homotopy class of the bundle overM4.
Which classes [F ] should we include in the sum?

There is a genuine choice to be made here.
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Classifying N = 4 theories
SU(2) vs. SO(3)

I will briefly illustrate this in the case g = su(2). There are two Lie
groups with algebra su(2): SU(2) and
SO(3) = PSU(2) = SU(2)/Z2.

Every SU(2) bundle can be interpreted as a SO(3) bundle, but in
sufficiently complicated manifolds there are SO(3) bundles that
cannot be understood as SU(2) bundles.
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Classifying N = 4 theories
SU(2) vs. SO(3)

The obstruction to understanding SO(3) bundles as SU(2) bundles
is encoded by elements w2 ∈ H2(M4;Z2), known as
Stiefel-Whitney classes. If a SO(3) bundle E has w2(E) 6= 0 then
it cannot be lifted to SU(2).

In constructing the partition function, we can choose to sum over all
SO(3) bundles, including those with w2 6= 0 (the “SO(3)” theory),

ZSO(3)[M4, ·] =
∑

[F ]∈SO(3)

∫
[DA][Dλ][DΦ]e−Sg[τ,A,λ,Φ]

or only over those with w2 = 0 (the “SU(2)” theory):

ZSU(2)[M4, ·] =
∑

[F ]∈SU(2)

∫
[DA][Dλ][DΦ]e−Sg[τ,A,λ,Φ] .
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Higher form symmetries

A similar story holds for all su(N).

We can understand the choices of global form as the choice of
1-form symmetry in the theory [Kapustin, Seiberg ’14], [Gaiotto,
Kapustin, Seiberg, Willett ’14]:

The SU(N) theory has a ZN electric 1-form symmetry, counting
Wilson lines in the fundamental. Introducing a background for this
1-form symmetry means turning on w2(E).

In the SU(N)/ZN theory we gauge this electric 1-form symmetry
by summing over all backgrounds for the symmetry. A magnetic
1-form symmetry counting ’t Hooft loops emerges.
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Holography and global structure

What is the holographic interpretation of the possible variants for
the su(N) N = 4 theory in 4d?

Answered in [Witten ’98]. The key insight is that we view the possible
4-dimensional theories as states in the Hilbert space of a 5-dimensional
topological “bulk” theory, taking the radial direction as “time”. [Friedan,
Shenker ’87], [Verlinde ’88], [Moore, Seiberg ’88], [Witten ’89], . . . ,
[Witten ’98], . . . , [Belov, Moore], . . .



Introduction Anomalies Higher form symmetries The symmetry theory Conclusions

Holography and global structure

What is the holographic interpretation of the possible variants for
the su(N) N = 4 theory in 4d?

Answered in [Witten ’98]. The key insight is that we view the possible
4-dimensional theories as states in the Hilbert space of a 5-dimensional
topological “bulk” theory, taking the radial direction as “time”. [Friedan,
Shenker ’87], [Verlinde ’88], [Moore, Seiberg ’88], [Witten ’89], . . . ,
[Witten ’98], . . . , [Belov, Moore], . . .



Introduction Anomalies Higher form symmetries The symmetry theory Conclusions

Quantization of the bulk TQFT
(Following [Witten ’98])

The reduction of IIB on S5 gives an effective action

LCS = N

2πi

∫
X5

B2 ∧ dC2 .

The equations of motion are

dB2 = dC2 = 0

and B2, C2 are canonically conjugate (B2 = C2 = 0 is disallowed!):

[Bij(x), Ckl(y)] = −2πi
N
εijklδ

4(x− y) .
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Quantization of the bulk TQFT
(Following [Witten ’98])

In order to specify the boundary conditions, in addition to specifying
the vevs of local gauge invariant operators, we need to specify

α(R) = exp
(
i

∫
R
B2

)
; β(S) = exp

(
i

∫
S
C2

)
for any R,S ⊂M4 near the boundary, X5 ≈ R×M4.

They do not commute:

α(R)β(S) = β(S)α(R) exp
(

2πi
N
R · S

)
.

So a state cannot be a simultaneous eigenstate of both when
R · S 6= 0 mod N . In terms of boundary conditions, we cannot fix
Dirichlet boundary conditions for both B2 and C2 simultaneously.
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Quantization of the bulk TQFT
(Following [Witten ’98])

The different global forms for su(N) are then determined by the
different boundary values of the B2 and C2 fields. In an appropriate
duality frame:

β(R) = 1 for all R 7→ SU(N).
α(R) = 1 for all R 7→ (SU(N)/ZN )0.
α(R)β(R)k = 1 for all R 7→ (SU(N)/ZN )k.
. . .
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(Non)-generalisations

In the holographic approach we start seeing how the structure of
generalised global symmetries is associated with a TQFT in one
dimension higher, the NB2 ∧ dC2 theory.

(Note: a quantum
theory!) Gauging (higher form) symmetries corresponds to choosing
different boundary conditions for this theory.

There are some limitations of the holographic approach, though:
Not every theory of interest admits a tractable large N limit.
For instance the E6 (2, 0) SCFT in d = 6 is unlikely to be
tractable in this way.
Even theories that do are subtle. For example, the case of
N = 4 with algebra so(N) has not yet been worked out.
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Back to geometric engineering

Consider M-theory on C2/Γ. This gives rise to 7d SYM with gauge
algebra gΓ. The 1-form symmetry group of GΓ (the simply
connected form) is its centre:

Γ ⊂ SU(2) gΓ GΓ Z(GΓ)
ZN su(N) SU(N) ZN

Binary dihedral Dic(2k−2) so(4k) Spin(4k) Z2 ⊕ Z2
Binary dihedral Dic(2k−1) so(4k + 2) Spin(4k + 2) Z4
Binary tetrahedral 2T e6 E6 Z3
Binary octahedral 2O e7 E7 Z2
Binary icosahedral 2I e8 E8 1

Other global forms are possible, for instance SU(N)/ZN , which
has a magnetic 4-form symmetry.
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Where is the data for the global form?
The form of the singularity does not fully fix the global form of the
gauge group, only the algebra. Either:

There is a preferred global form of the gauge group
(alternatively, a preferred set of higher form symmetries).

Or there is some extra data that we need to specify when
constructing the string theory model.

In [IGE, Heidenreich, Regalado ’19] we argued1 that (as in holography) it
is the second option that is realised: the choice of global form for the
gauge group is encoded in a choice of boundary conditions at infinity for
the supergravity fields, and all possible global forms can be obtained in
this way. (Related work: [Del Zotto, Heckman, Park, Rudelius ’15],
[Morrison, Schäfer-Nameki, Willett ’20], [Albertini, Del Zotto, IGE,
Hosseini ’20], [Closset, Schäfer-Nameki, Wang ’20], [Del Zotto, IGE,
Hosseini ’20], . . . )

1The key observation is that fluxes do not commute in spaces with torsion
[Freed, Moore, Segal ’06].
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The symmetry theory
Both anomalies and the choice of symmetries/global form can be
understood in terms of a topological theory in one dimension higher.
It makes sense to consider a single object that includes both:

We cannot gauge symmetries (relating choices of global form)
if they are anomalous.
We cannot speak of anomalies until we have chosen the global
form (and therefore the set of symmetries).

A picture (suggested by D. S. Freed) makes this precise

where T̃ encodes the (relative [Freed, Teleman ’12]) theory of local
dynamics, and ρ is a gapped interface encoding the choice of global form.
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How symmetry theories appear in string theory
The derivation in [IGE, Heidenreich, Regalado ’19] uses a modified
asymptotic structure.
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theory associated to the field theory: dimensional reduction on the link of
the singularity: [Apruzzi, Bonetti, IGE, Hosseini, S. Schäfer-Nameki ’21]
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How symmetry theories appear in string theory
The derivation in [IGE, Heidenreich, Regalado ’19] uses a modified
asymptotic structure. This suggests a strategy for deriving the symmetry
theory associated to the field theory: dimensional reduction on the link of
the singularity: [Apruzzi, Bonetti, IGE, Hosseini, S. Schäfer-Nameki ’21]

In this picture the boundary conditions at infinity that we need to specify
in string theory correspond to ρ, so the object that arises naturally is the
symmetry theory. (“Symmetry inflow” instead of “anomaly inflow”.)
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The anomaly theory

As an example, for 5d SCFTs the resulting symmetry theory is:

SSym =
∫
W6

(
KijB

(i)
2 ∪ δC

(j)
3 + ΩijkB

(i)
2 ∪B

(j)
2 ∪B

(k)
2

+ ΥijαB
(i)
2 ∪B

(j)
2 ∪ F

(α)
2

)
where the K, Ω, Υ coefficients are classical spin-Chern-Simons
invariants on the (5d) link.

We can compute these geometrically
using differential cohomology (but see also [Cvetič, Dierigl, Lin,
Zhang ’21]), and in cases where there is a geometric interpretation we can
compare against field theory predictions. For instance, for SU(p)q we get

K11 = gcd(p, q) ; Ω111 = q p (p− 1) (p− 2)
6 gcd(p, q)3 ; Υ111 = p (p− 1)

2 gcd(p, q)2

in agreement with [Gukov, Pei, Hsin ’20].
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Conclusions

In recent years developments in condensed matter, high energy
physics and mathematics (category theory, representation theory
and algebraic topology) have started converging onto a new
understanding of what “symmetry” means:

The symmetries (and anomalies) of a d-dimensional theory
originate on a (d+ 1)-dimensional TFT, with the field theory as a

boundary state.

String theory provides a beautiful geometrisation of these
developments. In some simple examples in 7d and 5d we could
derive systematically the symmetry theory from doing dimensional
reduction of the M-theory Chern-Simons sector on the link of the
singularity. We did not need any Lagrangian information about the
theory, only the geometry!
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singularity. We did not need any Lagrangian information about the
theory, only the geometry!
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Future directions I

Higher groups almost certainly fit well in this framework too,
although the symmetry theory has not been obtained from
reduction yet. But an analysis in terms of extended operators
shows that all necessary structures are indeed present in the
geometry of the link. [Apruzzi, Bhardwaj, Oh,
Schäfer-Nameki ’21] [Bhardwaj ’21], [Del Zotto, Heckman, Meynet,
Moscrop, Zhang ’22], [Del Zotto, I.G.-E., Schäfer-Nameki ’22],
[Cvetič, Heckman, Hübner, Torres ’22]

Higher categorical structures should also be visible from string
theory, but this has not been done yet.
We need to develop a classification of gapped interfaces for the kind
of symmetries theories that arise in string theory.
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Future directions II

We would like to have a systematic dictionary from geometry
to symmetry TFT.

We can use it to learn about field theory, but also about string
theory itself: what is the right mathematical framework for
dealing with fluxes in M-theory? ([Fiorenza, Sati, Schreiber].)
The computations we are doing are very sensitive to details, so
our analysis provides a probe into this question.
Relatedly, what is the imprint of the K-theoretical structure of
type II fluxes on the geometrically engineered theories?

Gravity is a big question mark. Gravitational anomalies fit well
in the framework, but how do we modify the previous
discussion to account for topology change? [Banerjee,
Moore ’22]
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