

Horizons & Singularities

Horizons limit what can be observed

Singularities

limit what can be predicted

(using classical General Relativity)

weak Cosmic Censorship Conjecture

You can predict everything you can observe

from afar

weak Cosmic Censorship

Naked singularities can't form

weak Cosmic Censorship

Nature hides Planck-scale physics from us

weak Cosmic Censorship

can be violated!

wCC violations

diverging curvature

Critical collapse

Black string instability

Choptuik 1993

Gregory+Laflamme 1993 Lehner+Pretorius 2011

Does Nature give us a chance to probe Planck-scale physics?

wCC violations

small mass, small extent

Improved weak Cosmic Censorship

Predictivity lost, predictivity regained

Only mild naked singularities can form,

small (Planck-scale) mass, size, and duration

They may even be controlled by attractors

What does AdS/CFT say about this?

What setup?

Black String instability in AdS

Setup

$$ds^2 = \frac{L^2}{\cos^2 z} \left(dz^2 + ds^2 \left(\operatorname{Schw-AdS}_{D-1} \right) \right)$$

Boundary:

Sphere with two black holes at antipodes

fixed geometry

$$Schw - AdS_{D-1}$$

Thin enough black strings are unstable to rippling

similar to Gregory-Laflamme

Hirayama+Kang 2001

Static phases

Uniform black string Black funnel

Black droplets

Fat funnels

Marolf+Santos 2019

(other possibilities too)

Dynamical evolution?

Black Tsunami flows

<u>Possible</u>

Fixed black hole @bdry acts as heat source/sink

Horizon generators can flow in/out of bdry: Black Tsunami

Singular pinch off

<u>Possible</u>

If string thickness ≪ AdS radius ⇒ ~ _____

What we have found

What we have found – dual view

How?

Large-*D* effective theory

Black string instability in AF space

 $D \rightarrow \infty$ effective theory

Non-linear evolution of AdS black strings

Boundary CFT signal of naked singularity formation

Large *D*:

Not easy to extract signal at boundary

Non-perturbative in 1/D

A linearized model

after Chesler+Way 2019

Critical collapse and Black string pinch show Self-Similarity

$$f(t,x) = f(e^{\lambda}t, e^{\lambda}x)$$

$$f(t,x) = f(e^{\lambda}t, e^{\lambda}x)$$

Continuous CSS: $\forall \lambda \in \mathbb{R}$

Discrete DSS: $\lambda = k\Delta$ $k \in \mathbb{N}$

Assume that

- naked singularity formation occurs through self-similar shrinking
- self-similar region is largely independent of smoother surroundings
- in a sizable part of it, gravity is approx linear

Find solution to *linearized gravity* in AdS that is Discrete Self-Similar near r = 0 t = 0

Extract holographic stress tensor near $r = \infty$

For DSS gravitational field

dual CFT stress tensor

$$\langle T_{tt} \rangle \sim t - \frac{\pi}{2}$$

vanishes

(pressures vanish too)

$$\langle T_{it} \rangle \sim \text{const}$$

$$\langle T_{ij} \rangle \sim \frac{1}{t - \frac{\pi}{2}}$$

shear

 $\frac{\pi}{2}$ = propagation time to bdry

Boundary signal is not smooth:

it oscillates an infinite number of times before $t = \frac{\pi}{2}$

→ It reaches arbitrarily high frequencies

But the energy density vanishes as $t \to \frac{\pi}{2}$

In CFT at large N, we expect

• a few, O(1) quanta, with energy $O(N^2)$ each

large localized shears

Not deadly

You don't notice a few gamma rays hitting you

What have we learned?

- Cosmic Censorship can be violated by AdS black strings
- Evolution is a combination of pinch-offs and tsunamis
- Dual CFT interpretation: Hawking radiation+burst
- Boundary burst: shearing, but mild a few γ-gravitons

Going further

• CFT resolution of singularity at finite *N*?

- Hawking radiation + gravitational backreaction
 - → Black hole evaporation as classical bulk evolution

Backup material

Thermodynamics – canonical

Can dominate for large BH@bdry

Never dominant

<u>Dominant for small</u> <u>BH@bdry</u>

Can dominate for large BH@bdry

Large *D* setup and effective equations

 $r_0 =$ thickness in AdS units

$$ds^{2} = \frac{L^{2}}{\cos^{2}(\frac{x}{\sqrt{n}})} \left(\frac{Hdx^{2}}{n} - (1+r_{0}^{-2})A dt^{2} + u_{t} \frac{2dt dR}{n R} - \frac{2}{n}C dtdx + r_{0}^{2} R^{\frac{2}{n}} d\Omega_{n+1}\right)$$
mass (area) density
$$A = 1 - \frac{m(t,x)}{D}$$

$$C = \frac{p(t,x)}{D}$$

$$\partial_t m + (\partial_x + x)(p - \partial_x m) = 0$$

$$\partial_t p - (\partial_x + x)\left(\partial_x p - \frac{p^2}{m}\right) - (1 + r_0^{-2})\partial_x m = 0$$

Moderate D

$D \rightarrow \infty$ effective theory

Black holes @ large *D*: gaussian blobs

$$d\Omega_{D+1} = d\theta^2 + \cos^2\theta \, d\Omega_D$$

$$Area(\theta) = \cos^D \theta \sim e^{D\theta^2/2}$$

Area strongly localized near equator

Tsunami to Fat funnel

Pinch-off to Droplets

Pinch+Tsunami

For critical scalar field collapse, this gives

 $\frac{\pi}{2}$ = propagation time to bdry

As observed in numerical evolution

Linearized SS solution (scalar field)

sum over AdS normal modes

$$\varphi \sim \sum_{n} a_n F(nt, nx)$$
 self-similarity (high n)
$$a_n = a_{n/\lambda}$$

self-similar about
$$t = \frac{\pi}{2}$$

$$\langle \mathcal{O}_{\varphi} \rangle \sim \partial_{t} \sum_{n} a_{n} G\left(n\left(t - \frac{\pi}{2}\right)\right) \sim \frac{1}{t - \frac{\pi}{2}}$$

$$\langle \mathcal{O}_{\varphi} \rangle \sim \partial_t F \left[\log \left(t - \frac{\pi}{2} \right) \right] \sim \frac{1}{t - \frac{\pi}{2}}$$

DSS

 $\frac{\pi}{2}$ = propagation time to bdry

For a DSS function of $log(t - t_*)$

$$\partial_t \sim \frac{1}{t - t_*}$$

A CSS function of only t must be constant

Stress-energy conservation:

$$\partial_t \langle T_{tt} \rangle = \nabla^i \langle T_{it} \rangle \qquad \partial_t \langle T_{ti} \rangle = \nabla^j \langle T_{ji} \rangle$$

• DSS: $\partial_t \sim \frac{1}{t-t_*}$

$$\Rightarrow \langle T_{tt} \rangle \sim (t - t_*) \langle T_{it} \rangle \sim (t - t_*)^2 \langle T_{ij} \rangle$$

Conservation:

Shear mode (tensor) ~ scalar field:

$$\langle T_{tt} \rangle \sim (t - t_*) \langle T_{it} \rangle \sim (t - t_*)^2 \langle T_{ij} \rangle$$

$$\langle T_{ij} \rangle \sim \frac{1}{t - t_*}$$

$$\langle T_{tt} \rangle \sim t - t_*$$
 vanishes!

$$\Rightarrow$$
 $\langle T_{it} \rangle \sim \text{const}$

$$\langle T_{ij} \rangle \sim \frac{1}{t-t_*}$$

(explicit solution bears this out)